Advanced Search
MyIDEAS: Login to save this article or follow this journal

Modeling of end-use energy consumption in the residential sector: A review of modeling techniques


Author Info

  • Swan, Lukas G.
  • Ugursal, V. Ismet
Registered author(s):


    There is a growing interest in reducing energy consumption and the associated greenhouse gas emissions in every sector of the economy. The residential sector is a substantial consumer of energy in every country, and therefore a focus for energy consumption efforts. Since the energy consumption characteristics of the residential sector are complex and inter-related, comprehensive models are needed to assess the technoeconomic impacts of adopting energy efficiency and renewable energy technologies suitable for residential applications. The aim of this paper is to provide an up-to-date review of the various modeling techniques used for modeling residential sector energy consumption. Two distinct approaches are identified: top-down and bottom-up. The top-down approach treats the residential sector as an energy sink and is not concerned with individual end-uses. It utilizes historic aggregate energy values and regresses the energy consumption of the housing stock as a function of top-level variables such as macroeconomic indicators (e.g. gross domestic product, unemployment, and inflation), energy price, and general climate. The bottom-up approach extrapolates the estimated energy consumption of a representative set of individual houses to regional and national levels, and consists of two distinct methodologies: the statistical method and the engineering method. Each technique relies on different levels of input information, different calculation or simulation techniques, and provides results with different applicability. A critical review of each technique, focusing on the strengths, shortcomings and purposes, is provided along with a review of models reported in the literature.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Renewable and Sustainable Energy Reviews.

    Volume (Year): 13 (2009)
    Issue (Month): 8 (October)
    Pages: 1819-1835

    as in new window
    Handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1819-1835

    Contact details of provider:
    Web page:

    Order Information:

    Related research

    Keywords: Residential energy model Residential energy consumption Housing energy model Energy model;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Wiesmann, Daniel & Lima Azevedo, Inês & Ferrão, Paulo & Fernández, John E., 2011. "Residential electricity consumption in Portugal: Findings from top-down and bottom-up models," Energy Policy, Elsevier, vol. 39(5), pages 2772-2779, May.
    2. Sütterlin, Bernadette & Brunner, Thomas A. & Siegrist, Michael, 2011. "Who puts the most energy into energy conservation? A segmentation of energy consumers based on energy-related behavioral characteristics," Energy Policy, Elsevier, vol. 39(12), pages 8137-8152.
    3. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, Open Access Journal, vol. 5(11), pages 4497-4516, November.
    4. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    5. Jackson, Jerry, 2010. "Improving energy efficiency and smart grid program analysis with agent-based end-use forecasting models," Energy Policy, Elsevier, vol. 38(7), pages 3771-3780, July.
    6. Filippín, C. & Larsen, S. Flores & Mercado, V., 2011. "Winter energy behaviour in multi-family block buildings in a temperate-cold climate in Argentina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 203-219, January.
    7. Wyatt, Peter, 2013. "A dwelling-level investigation into the physical and socio-economic drivers of domestic energy consumption in England," Energy Policy, Elsevier, vol. 60(C), pages 540-549.
    8. López-Rodríguez, M.A. & Santiago, I. & Trillo-Montero, D. & Torriti, J. & Moreno-Munoz, A., 2013. "Analysis and modeling of active occupancy of the residential sector in Spain: An indicator of residential electricity consumption," Energy Policy, Elsevier, vol. 62(C), pages 742-751.
    9. Radmehr, Mehrshad & Willis, Ken & Kenechi, Ugo Elinwa, 2014. "A framework for evaluating WTP for BIPV in residential housing design in developing countries: A case study of North Cyprus," Energy Policy, Elsevier, vol. 70(C), pages 207-216.
    10. Huang, Shisheng & Hodge, Bri-Mathias S. & Taheripour, Farzad & Pekny, Joseph F. & Reklaitis, Gintaras V. & Tyner, Wallace E., 2011. "The effects of electricity pricing on PHEV competitiveness," Energy Policy, Elsevier, vol. 39(3), pages 1552-1561, March.
    11. Nie, Hongguang & Kemp, René, 2014. "Index decomposition analysis of residential energy consumption in China: 2002–2010," Applied Energy, Elsevier, vol. 121(C), pages 10-19.
    12. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    13. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    14. Wei Yu & Baizhan Li & Yarong Lei & Meng Liu, 2011. "Analysis of a Residential Building Energy Consumption Demand Model," Energies, MDPI, Open Access Journal, vol. 4(3), pages 475-487, March.
    15. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    16. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.
    17. Torriti, Jacopo, 2013. "The significance of occupancy steadiness in residential consumer response to Time-of-Use pricing: Evidence from a stochastic adjustment model," Utilities Policy, Elsevier, vol. 27(C), pages 49-56.
    18. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:13:y:2009:i:8:p:1819-1835. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.