Advanced Search
MyIDEAS: Login

Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks

Contents:

Author Info

  • Aydinalp, Merih
  • Ismet Ugursal, V.
  • Fung, Alan S.
Registered author(s):

    Abstract

    Two methods are currently used to model residential energy consumption at the national or regional level: the engineering method and the conditional demand analysis method. Another potentially feasible method to model residential energy consumption is the neural network (NN) method. Using the NN method, it is possible to determine causal relationships amongst a large number of parameters, such as occur in the energy consumption patterns in the residential sector. A review of the published literature indicates that the NN method has not been used or tested for housing-sector energy consumption modeling. A NN based energy consumption model is being developed for the Canadian residential sector. This paper presents the NN methodology used in developing the appliances, lighting, and space-cooling component of the model, the accuracy of its predictions, and some sample results.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V1T-44KVVMJ-2/2/f8a3974bbf07c92676afb5e4399d40b9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 71 (2002)
    Issue (Month): 2 (February)
    Pages: 87-110

    as in new window
    Handle: RePEc:eee:appene:v:71:y:2002:i:2:p:87-110

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    Related research

    Keywords: Residential energy consumption modeling Appliance; lighting; and space-cooling energy Neural networks modeling;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Ermis, K. & Midilli, A. & Dincer, I. & Rosen, M.A., 2007. "Artificial neural network analysis of world green energy use," Energy Policy, Elsevier, vol. 35(3), pages 1731-1743, March.
    3. Thiaw, L. & Sow, G. & Fall, S.S. & Kasse, M. & Sylla, E. & Thioye, S., 2010. "A neural network based approach for wind resource and wind generators production assessment," Applied Energy, Elsevier, vol. 87(5), pages 1744-1748, May.
    4. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    5. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    6. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    7. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:71:y:2002:i:2:p:87-110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.