IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5268-d621617.html
   My bibliography  Save this article

Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios

Author

Listed:
  • Yuriy Leonidovich Zhukovskiy

    (Educational Research Center for Digital Technologies, Saint Petersburg Mining University, 2, 21st Line, 191106 Saint Petersburg, Russia)

  • Daria Evgenievna Batueva

    (Educational Research Center for Digital Technologies, Saint Petersburg Mining University, 2, 21st Line, 191106 Saint Petersburg, Russia)

  • Alexandra Dmitrievna Buldysko

    (Educational Research Center for Digital Technologies, Saint Petersburg Mining University, 2, 21st Line, 191106 Saint Petersburg, Russia)

  • Bernard Gil

    (Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, 34095 Montpellier, France)

  • Valeriia Vladimirovna Starshaia

    (Educational Research Center for Digital Technologies, Saint Petersburg Mining University, 2, 21st Line, 191106 Saint Petersburg, Russia)

Abstract

In the next 20 years, the fossil energy must become a guarantor of the sustainable development of the energy sector for future generations. Significant threats represent hurdles in this transition. This study identified current global trends in the energy sector and the prospects for the development of energy until 2035. The importance of risk assessment in scenario forecasting based on expert judgments was proven. Three contrasting scenarios, #StayHome, #StayAlone, and #StayEffective, for the development of fossil energy, all based on comprehensive analysis of global risks by expert survey and factor analysis, were developed. It was concluded that fossil energy is mandatory with integration of advanced technologies at every stage of the production of traditional energy and of renewable energy as an integral part of the modern energy sector. Based on the results of the study, nine ambitious programs for the development of sustainable energy are presented. They require the creation and the utilization of a single interactive digital platform adapted to this purpose. It is a passport mandatory for the flexible interaction of energy production, its transmission, and its consumption in the perspective of having a future sustainable, reliable, and secured energy sector.

Suggested Citation

  • Yuriy Leonidovich Zhukovskiy & Daria Evgenievna Batueva & Alexandra Dmitrievna Buldysko & Bernard Gil & Valeriia Vladimirovna Starshaia, 2021. "Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios," Energies, MDPI, vol. 14(17), pages 1-28, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5268-:d:621617
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kishita, Yusuke & Mizuno, Yuji & Fukushige, Shinichi & Umeda, Yasushi, 2020. "Scenario structuring methodology for computer-aided scenario design: An application to envisioning sustainable futures," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    2. Bucci, Alberto & Eraydın, Levent & Müller, Moritz, 2019. "Dilution effects, population growth and economic growth under human capital accumulation and endogenous technological change," Journal of Macroeconomics, Elsevier, vol. 62(C).
    3. Coady, David & Parry, Ian & Sears, Louis & Shang, Baoping, 2017. "How Large Are Global Fossil Fuel Subsidies?," World Development, Elsevier, vol. 91(C), pages 11-27.
    4. Peter Howson, 2019. "Tackling climate change with blockchain," Nature Climate Change, Nature, vol. 9(9), pages 644-645, September.
    5. Clifford Lynch, 2008. "How do your data grow?," Nature, Nature, vol. 455(7209), pages 28-29, September.
    6. Paul E. Brockway & Anne Owen & Lina I. Brand-Correa & Lukas Hardt, 2019. "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources," Nature Energy, Nature, vol. 4(7), pages 612-621, July.
    7. Jonathan J. Buonocore & Ernani Choma & Aleyda H. Villavicencio & John D. Spengler & Dinah A. Koehler & John S. Evans & Jos Lelieveld & Piet Klop & Ramon Sanchez-Pina, 2019. "Metrics for the sustainable development goals: renewable energy and transportation," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    8. Di Silvestre, Maria Luisa & Favuzza, Salvatore & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2018. "How Decarbonization, Digitalization and Decentralization are changing key power infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 483-498.
    9. Jefferson, Michael, 2020. "Scenario planning: Evidence to counter ‘Black box’ claims," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    10. Zeppini, Paolo & van den Bergh, Jeroen C.J.M., 2020. "Global competition dynamics of fossil fuels and renewable energy under climate policies and peak oil: A behavioural model," Energy Policy, Elsevier, vol. 136(C).
    11. Zhenci Xu & Yingjie Li & Sophia N. Chau & Thomas Dietz & Canbing Li & Luwen Wan & Jindong Zhang & Liwei Zhang & Yunkai Li & Min Gon Chung & Jianguo Liu, 2020. "Impacts of international trade on global sustainable development," Nature Sustainability, Nature, vol. 3(11), pages 964-971, November.
    12. Vaillancourt, Kathleen & Bahn, Olivier & Frenette, Erik & Sigvaldason, Oskar, 2017. "Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework," Applied Energy, Elsevier, vol. 195(C), pages 774-785.
    13. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    14. Zhu Liu & Philippe Ciais & Zhu Deng & Steven J. Davis & Bo Zheng & Yilong Wang & Duo Cui & Biqing Zhu & Xinyu Dou & Piyu Ke & Taochun Sun & Rui Guo & Olivier Boucher & Francois-Marie Breon & Chenxi Lu, 2020. "Carbon Monitor: a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production," Papers 2006.07690, arXiv.org.
    15. Wang, Qiang & Li, Shuyu & Pisarenko, Zhanna, 2020. "Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy -- evidence from the G20 countries," Energy, Elsevier, vol. 209(C).
    16. Gordon Wetzstein & Aydogan Ozcan & Sylvain Gigan & Shanhui Fan & Dirk Englund & Marin Soljačić & Cornelia Denz & David A. B. Miller & Demetri Psaltis, 2020. "Inference in artificial intelligence with deep optics and photonics," Nature, Nature, vol. 588(7836), pages 39-47, December.
    17. Huynh, Toan Luu Duc & Hille, Erik & Nasir, Muhammad Ali, 2020. "Diversification in the age of the 4th industrial revolution: The role of artificial intelligence, green bonds and cryptocurrencies," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    18. Jonek-Kowalska, Izabela, 2019. "Efficiency of Enterprise Risk Management (ERM) systems. Comparative analysis in the fuel sector and energy sector on the basis of Central-European companies listed on the Warsaw Stock Exchange," Resources Policy, Elsevier, vol. 62(C), pages 405-415.
    19. Scott Spillias & Peter Kareiva & Mary Ruckelshaus & Eve McDonald-Madden, 2020. "Renewable energy targets may undermine their sustainability," Nature Climate Change, Nature, vol. 10(11), pages 974-976, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuriy Zhukovskiy & Pavel Tsvetkov & Aleksandra Buldysko & Yana Malkova & Antonina Stoianova & Anastasia Koshenkova, 2021. "Scenario Modeling of Sustainable Development of Energy Supply in the Arctic," Resources, MDPI, vol. 10(12), pages 1-25, December.
    2. Andri Ottesen & Dieter Thom & Rupali Bhagat & Rola Mourdaa, 2023. "Learning from the Future of Kuwait: Scenarios as a Learning Tool to Build Consensus for Actions Needed to Realize Vision 2035," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    3. Diana Lvova & Artem Shagiakhmetov & Boris Seregin & Aleksey Vasiliev, 2022. "Facilities Construction Engineering for the Avaldsnes Section of the Johan Sverdrup Field in the North Sea," Energies, MDPI, vol. 15(12), pages 1-18, June.
    4. Nikita Dmitrievich Senchilo & Denis Anatolievich Ustinov, 2021. "Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption," Energies, MDPI, vol. 14(21), pages 1-25, October.
    5. Guangbiao Fu & Songyuan Zhang & Zhong Ge & Jian Li & Jian Xu & Jianbin Xie & Zhiyong Xie & Dong Yao & Tao Zhao & Zhijie Wang & Shuaikun Yue & Siyu Zhao & Fanhan Liu & Qiuping Jiang, 2022. "Thermo-Economic Performance Analysis of a Novel Organic Flash Rankine Cycle Using R600/R245fa Mixtures," Energies, MDPI, vol. 15(21), pages 1-19, October.
    6. Joanna Rosak-Szyrocka & Justyna Żywiołek & Maciej Mrowiec, 2022. "Analysis of Customer Satisfaction with the Quality of Energy Market Services in Poland," Energies, MDPI, vol. 15(10), pages 1-24, May.
    7. Liu, Qiqi & Sun, Lulu & Zhang, Yanbo & Liu, Zhenyi & Ma, Jiayu, 2023. "Effects of water immersion and pre-oxidation on re-ignition characteristics of non-caking coal," Energy, Elsevier, vol. 282(C).
    8. Amina Andreichyk & Pavel Tsvetkov, 2023. "Study of the Relationship between Economic Growth and Greenhouse Gas Emissions of the Shanghai Cooperation Organization Countries on the Basis of the Environmental Kuznets Curve," Resources, MDPI, vol. 12(7), pages 1-20, July.
    9. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni & Zhang, Jiaxin, 2023. "Inhibiting effect and mechanism of polyethylene glycol - Citric acid on coal spontaneous combustion," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arfaoui, Nadia & Naeem, Muhammad Abubakr & Boubaker, Sabri & Mirza, Nawazish & Karim, Sitara, 2023. "Interdependence of clean energy and green markets with cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    2. Yang, Chunmeng & Bu, Siqi & Fan, Yi & Wan, Wayne Xinwei & Wang, Ruoheng & Foley, Aoife, 2023. "Data-driven prediction and evaluation on future impact of energy transition policies in smart regions," Applied Energy, Elsevier, vol. 332(C).
    3. Oughton, Edward J. & Comini, Niccolò & Foster, Vivien & Hall, Jim W., 2022. "Policy choices can help keep 4G and 5G universal broadband affordable," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    4. Ahl, Amanda & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2019. "Review of blockchain-based distributed energy: Implications for institutional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 200-211.
    5. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    6. Zwickl-Bernhard, Sebastian & Auer, Hans, 2022. "Demystifying natural gas distribution grid decommissioning: An open-source approach to local deep decarbonization of urban neighborhoods," Energy, Elsevier, vol. 238(PB).
    7. Zhang, Dongna & Chen, Xihui Haviour & Lau, Chi Keung Marco & Xu, Bing, 2023. "Implications of cryptocurrency energy usage on climate change," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    8. Pereira, Guillermo Ivan & Niesten, Eva & Pinkse, Jonatan, 2022. "Sustainable energy systems in the making: A study on business model adaptation in incumbent utilities," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    9. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Hou, Jianchao & Wang, Che & Luo, Sai, 2020. "How to improve the competiveness of distributed energy resources in China with blockchain technology," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. McCulloch, Neil & Natalini, Davide & Hossain, Naomi & Justino, Patricia, 2022. "An exploration of the association between fuel subsidies and fuel riots," World Development, Elsevier, vol. 157(C).
    12. Wesam Salah Alaloul & Muhammad Ali Musarat & Muhammad Babar Ali Rabbani & Qaiser Iqbal & Ahsen Maqsoom & Waqas Farooq, 2021. "Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    13. Melkie Getnet Tadesse & Esubalew Kasaw & Biruk Fentahun & Emil Loghin & Jörn Felix Lübben, 2022. "Banana Peel and Conductive Polymers-Based Flexible Supercapacitors for Energy Harvesting and Storage," Energies, MDPI, vol. 15(7), pages 1-20, March.
    14. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    15. Jon Sampedro & Iñaki Arto & Mikel González-Eguino, 2017. "Implications of Switching Fossil Fuel Subsidies to Solar: A Case Study for the European Union," Sustainability, MDPI, vol. 10(1), pages 1-12, December.
    16. Claudio Vitari & Elisabetta Raguseo, 2016. "Big data value and financial performance: an empirical investigation [Digital data, dynamic capability and financial performance: an empirical investigation in the era of Big Data]," Post-Print halshs-01923271, HAL.
    17. Alan Colin Brent, 2021. "Renewable Energy for Sustainable Development," Sustainability, MDPI, vol. 13(12), pages 1-2, June.
    18. Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    19. Syed Hasan & Odmaa Narantungalag, & Martin Berka, 2022. "The intended and unintended consequences of large electricity subsidies: evidence from Mongolia," Discussion Papers 2202, School of Economics and Finance, Massey University, New Zealand.
    20. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5268-:d:621617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.