IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v187y2023ics0040162522007405.html
   My bibliography  Save this article

Implications of cryptocurrency energy usage on climate change

Author

Listed:
  • Zhang, Dongna
  • Chen, Xihui Haviour
  • Lau, Chi Keung Marco
  • Xu, Bing

Abstract

This study investigates the environmental implications of cryptocurrency energy consumption on climate change. Using a spectrum of approaches, including Granger causality across quantiles, cross-quantilograms, and dynamic connectedness, we provide novel evidence on the nexus between Bitcoin mining and climate change. First, we find a significant Granger causality between carbon dioxide (CO2) emissions and the energy usage of Bitcoin that concentrates on the right-tail quantiles. Second, we show that the directional predictability from hash rate, blockchain size, and Bitcoin returns to Bitcoin electricity consumption is heterogeneous. We also discover significant directional predictability between the energy usage of Bitcoin mining and CO2 emissions. Third, the dynamic connectedness results show that hash rate transmits the most substantial net spillover effects to CO2 emissions and Bitcoin electricity consumption. Accordingly, hash rate exerts a major influence on Bitcoin electricity consumption and climate change. This study highlights the necessity of stimulating technological advances in developing energy-efficient decentralized finance consensus algorithms to transform the cryptocurrency market into a climate-friendly market. The results provide policy implications by emphasizing the importance of cryptocurrency ecosystem decarbonization in addressing environmental concerns.

Suggested Citation

  • Zhang, Dongna & Chen, Xihui Haviour & Lau, Chi Keung Marco & Xu, Bing, 2023. "Implications of cryptocurrency energy usage on climate change," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:tefoso:v:187:y:2023:i:c:s0040162522007405
    DOI: 10.1016/j.techfore.2022.122219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522007405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.122219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Tae-Hwy & Yang, Weiping, 2014. "Granger-causality in quantiles between financial markets: Using copula approach," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 70-78.
    2. Lahiani, Amine & Mefteh-Wali, Salma & Shahbaz, Muhammad & Vo, Xuan Vinh, 2021. "Does financial development influence renewable energy consumption to achieve carbon neutrality in the USA?," Energy Policy, Elsevier, vol. 158(C).
    3. Muhammad Umar & Xiangfeng Ji & Dervis Kirikkaleli & Muhammad Shahbaz & Xuemei Zhou, 2020. "Environmental cost of natural resources utilization and economic growth: Can China shift some burden through globalization for sustainable development?," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(6), pages 1678-1688, November.
    4. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    5. Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
    6. Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
    7. Peter Howson, 2019. "Tackling climate change with blockchain," Nature Climate Change, Nature, vol. 9(9), pages 644-645, September.
    8. Jana, Rabin K. & Ghosh, Indranil & Wallin, Martin W., 2022. "Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    9. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    10. Linton, O. & Whang, Yoon-Jae, 2007. "The quantilogram: With an application to evaluating directional predictability," Journal of Econometrics, Elsevier, vol. 141(1), pages 250-282, November.
    11. Aysan, Ahmet Faruk & Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "Effects of the geopolitical risks on Bitcoin returns and volatility," Research in International Business and Finance, Elsevier, vol. 47(C), pages 511-518.
    12. Chishti, Muhammad Zubair & Sinha, Avik, 2022. "Do the shocks in technological and financial innovation influence the environmental quality? Evidence from BRICS economies," Technology in Society, Elsevier, vol. 68(C).
    13. Wang, Xiaoling & Zhang, Tianyue & Nathwani, Jatin & Yang, Fangming & Shao, Qinglong, 2022. "Environmental regulation, technology innovation, and low carbon development: Revisiting the EKC Hypothesis, Porter Hypothesis, and Jevons’ Paradox in China's iron & steel industry," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    14. Bouri, Elie & Gupta, Rangan & Lahiani, Amine & Shahbaz, Muhammad, 2018. "Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices," Resources Policy, Elsevier, vol. 57(C), pages 224-235.
    15. Bouri, Elie & Gupta, Rangan & Lau, Chi Keung Marco & Roubaud, David & Wang, Shixuan, 2018. "Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 297-307.
    16. David Talbot & Olivier Boiral, 2018. "GHG Reporting and Impression Management: An Assessment of Sustainability Reports from the Energy Sector," Journal of Business Ethics, Springer, vol. 147(2), pages 367-383, January.
    17. Max J. Krause & Thabet Tolaymat, 2018. "Author Correction: Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(12), pages 814-814, December.
    18. Huynh, Toan Luu Duc & Hille, Erik & Nasir, Muhammad Ali, 2020. "Diversification in the age of the 4th industrial revolution: The role of artificial intelligence, green bonds and cryptocurrencies," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    19. Camilo Mora & Randi L. Rollins & Katie Taladay & Michael B. Kantar & Mason K. Chock & Mio Shimada & Erik C. Franklin, 2018. "Bitcoin emissions alone could push global warming above 2°C," Nature Climate Change, Nature, vol. 8(11), pages 931-933, November.
    20. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    21. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    22. Max J. Krause & Thabet Tolaymat, 2018. "Quantification of energy and carbon costs for mining cryptocurrencies," Nature Sustainability, Nature, vol. 1(11), pages 711-718, November.
    23. Adel Ben Youssef & Sabri Boubaker & Anis Omri, 2020. "Financial development and macroeconomic sustainability: modeling based on a modified environmental Kuznets curve," Climatic Change, Springer, vol. 163(2), pages 767-785, November.
    24. Zhu Liu & Philippe Ciais & Zhu Deng & Ruixue Lei & Steven J. Davis & Sha Feng & Bo Zheng & Duo Cui & Xinyu Dou & Pan He & Biqing Zhu & Chenxi Lu & Piyu Ke & Taochun Sun & Yuan Wang & Xu Yue & Yilong W, 2020. "COVID-19 causes record decline in global CO2 emissions," Papers 2004.13614, arXiv.org, revised Jun 2020.
    25. Lei, Nuoa & Masanet, Eric & Koomey, Jonathan, 2021. "Best practices for analyzing the direct energy use of blockchain technology systems: Review and policy recommendations," Energy Policy, Elsevier, vol. 156(C).
    26. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2021. "Bitcoin-energy markets interrelationships - New evidence," Resources Policy, Elsevier, vol. 70(C).
    27. Shangrong Jiang & Yuze Li & Quanying Lu & Yongmiao Hong & Dabo Guan & Yu Xiong & Shouyang Wang, 2021. "Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    28. Baur, Dirk G. & Oll, Josua, 2022. "Bitcoin investments and climate change: A financial and carbon intensity perspective," Finance Research Letters, Elsevier, vol. 47(PA).
    29. Dastgir, Shabbir & Demir, Ender & Downing, Gareth & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula-based Granger causality test," Finance Research Letters, Elsevier, vol. 28(C), pages 160-164.
    30. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    31. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    32. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    33. Farag, Hisham & Johan, Sofia, 2021. "How alternative finance informs central themes in corporate finance," Journal of Corporate Finance, Elsevier, vol. 67(C).
    34. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tang, Yumei & Chen, Xihui Haviour & Sarker, Provash Kumer & Baroudi, Sarra, 2023. "Asymmetric effects of geopolitical risks and uncertainties on green bond markets," Technological Forecasting and Social Change, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    2. Elie Bouri & Rangan Gupta & Chi keung marco Lau & David Roubaud, 2021. "Risk aversion and Bitcoin returns in extreme quantiles," Economics Bulletin, AccessEcon, vol. 41(3), pages 1374-1386.
    3. Kamal, Javed Bin & Hassan, M. Kabir, 2022. "Asymmetric connectedness between cryptocurrency environment attention index and green assets," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    4. Le, Thanh Ha, 2023. "Quantile time-frequency connectedness between cryptocurrency volatility and renewable energy volatility during the COVID-19 pandemic and Ukraine-Russia conflicts," Renewable Energy, Elsevier, vol. 202(C), pages 613-625.
    5. Anh Ngoc Quang Huynh & Duy Duong & Tobias Burggraf & Hien Thi Thu Luong & Nam Huu Bui, 2022. "Energy Consumption and Bitcoin Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(1), pages 79-93, March.
    6. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Baur, Dirk G. & Oll, Josua, 2022. "Bitcoin investments and climate change: A financial and carbon intensity perspective," Finance Research Letters, Elsevier, vol. 47(PA).
    8. Sharif, Arshian & Brahim, Mariem & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "Analysis of the spillover effects between green economy, clean and dirty cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    9. Dastgir, Shabbir & Demir, Ender & Downing, Gareth & Gozgor, Giray & Lau, Chi Keung Marco, 2019. "The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula-based Granger causality test," Finance Research Letters, Elsevier, vol. 28(C), pages 160-164.
    10. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    11. Arfaoui, Nadia & Naeem, Muhammad Abubakr & Boubaker, Sabri & Mirza, Nawazish & Karim, Sitara, 2023. "Interdependence of clean energy and green markets with cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    12. Adediran, Idris A. & Yinusa, Olalekan D. & Lakhani, Kanwal Hammad, 2021. "Where lies the silver lining when uncertainty hang dark clouds over the global financial markets?," Resources Policy, Elsevier, vol. 70(C).
    13. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    14. Jareño, Francisco & González, María de la O & Tolentino, Marta & Sierra, Karen, 2020. "Bitcoin and gold price returns: A quantile regression and NARDL analysis," Resources Policy, Elsevier, vol. 67(C).
    15. Mokni, Khaled & Youssef, Manel & Ajmi, Ahdi Noomen, 2022. "COVID-19 pandemic and economic policy uncertainty: The first test on the hedging and safe haven properties of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 60(C).
    16. Elsayed, Ahmed H. & Gozgor, Giray & Yarovaya, Larisa, 2022. "Volatility and return connectedness of cryptocurrency, gold, and uncertainty: Evidence from the cryptocurrency uncertainty indices," Finance Research Letters, Elsevier, vol. 47(PB).
    17. Mingbo Zheng & Gen-Fu Feng & Xinxin Zhao & Chun-Ping Chang, 2023. "The transaction behavior of cryptocurrency and electricity consumption," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-18, December.
    18. Abakah, Emmanuel Joel Aikins & Wali Ullah, GM & Adekoya, Oluwasegun B. & Osei Bonsu, Christiana & Abdullah, Mohammad, 2023. "Blockchain market and eco-friendly financial assets: Dynamic price correlation, connectedness and spillovers with portfolio implications," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 218-243.
    19. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    20. Ahmed H. Elsayed & Giray Gozgor & Chi Keung Marco Lau, 2022. "Causality and dynamic spillovers among cryptocurrencies and currency markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2026-2040, April.

    More about this item

    Keywords

    Climate change; Technological innovation; Cryptocurrency; Bitcoin; CO2 emissions;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:187:y:2023:i:c:s0040162522007405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.