IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5251-d621246.html
   My bibliography  Save this article

Forecast of the Demand for Electric Mobility for Rome–Fiumicino International Airport

Author

Listed:
  • Romano Alberto Acri

    (Department of Astronautic, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Silvia Barone

    (Department of Astronautic, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Paolo Cambula

    (Aeroporti di Roma spa, Atlantia Group, 00161 Rome, Italy)

  • Valter Cecchini

    (Aeroporti di Roma spa, Atlantia Group, 00161 Rome, Italy)

  • Maria Carmen Falvo

    (Department of Astronautic, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Jacopo Lepore

    (Department of Astronautic, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Matteo Manganelli

    (Department of Astronautic, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy)

  • Federico Santi

    (Department of Astronautic, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy)

Abstract

Following electrification of automotive transport, studies on the penetration of electric vehicles (EVs) are widespread, especially in defined contexts. As major transport hubs, airports fall within contexts worthy of interest. In this work, a forecast of the demand for electric mobility in an Italian international airport (Rome–Fiumicino) is presented. The main goal of the research is to build up a methodology that allows evaluating the penetration index of EVs that will access the airport parks in 2025 and 2030, to be able to have a preliminary assessment of the number of charging points necessary for serving them. In the paper, first, a wide review of proposed scenarios on the penetration of EVs at international and national level and available data on local automotive transport are presented, as a preliminary study for the definition of reference scenarios for the local context. Then, the proposed methodology is presented and applied to the specific case study. Finally, a preliminary sizing of the required charging infrastructure is reported. The results show that a significant impact on the airport electricity network can be foreseen, and it requires proper planning of adaptation/upgrading actions. The proposed approach can be considered as a reference for similar studies on electrical mobility in other airport areas around the world.

Suggested Citation

  • Romano Alberto Acri & Silvia Barone & Paolo Cambula & Valter Cecchini & Maria Carmen Falvo & Jacopo Lepore & Matteo Manganelli & Federico Santi, 2021. "Forecast of the Demand for Electric Mobility for Rome–Fiumicino International Airport," Energies, MDPI, vol. 14(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5251-:d:621246
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    2. Yuan, Xiaodong & Li, Xiaotao, 2021. "Mapping the technology diffusion of battery electric vehicle based on patent analysis: A perspective of global innovation systems," Energy, Elsevier, vol. 222(C).
    3. Marialisa Nigro & Marina Ferrara & Rosita De Vincentis & Carlo Liberto & Gaetano Valenti, 2021. "Data Driven Approaches for Sustainable Development of E-Mobility in Urban Areas," Energies, MDPI, vol. 14(13), pages 1-19, July.
    4. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    5. Roberto Ruggieri & Marco Ruggeri & Giuliana Vinci & Stefano Poponi, 2021. "Electric Mobility in a Smart City: European Overview," Energies, MDPI, vol. 14(2), pages 1-29, January.
    6. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data. Part I: Model structure and validation," Working Papers "Sustainability and Innovation" S4/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    7. Liu, Jin-peng & Zhang, Teng-xi & Zhu, Jiang & Ma, Tian-nan, 2018. "Allocation optimization of electric vehicle charging station (EVCS) considering with charging satisfaction and distributed renewables integration," Energy, Elsevier, vol. 164(C), pages 560-574.
    8. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    9. Harvey, L.D.D., 2013. "Global climate-oriented transportation scenarios," Energy Policy, Elsevier, vol. 54(C), pages 87-103.
    10. Kong, Deyang & Xia, Quhong & Xue, Yixi & Zhao, Xin, 2020. "Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective," Applied Energy, Elsevier, vol. 266(C).
    11. Jorgensen, K., 2008. "Technologies for electric, hybrid and hydrogen vehicles: Electricity from renewable energy sources in transport," Utilities Policy, Elsevier, vol. 16(2), pages 72-79, June.
    12. Plötz, Patrick & Gnann, Till & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data — Part I: Model structure and validation," Ecological Economics, Elsevier, vol. 107(C), pages 411-421.
    13. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data: German market and policy options," Working Papers "Sustainability and Innovation" S12/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    15. Amela Ajanovic & Marina Siebenhofer & Reinhard Haas, 2021. "Electric Mobility in Cities: The Case of Vienna," Energies, MDPI, vol. 14(1), pages 1-18, January.
    16. Wesseling, J.H. & Faber, J. & Hekkert, M.P., 2014. "How competitive forces sustain electric vehicle development," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 154-164.
    17. Juan C. González Palencia & Van Tuan Nguyen & Mikiya Araki & Seiichi Shiga, 2020. "The Role of Powertrain Electrification in Achieving Deep Decarbonization in Road Freight Transport," Energies, MDPI, vol. 13(10), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrés Montero Romero & Andrea Di Martino & Michela Longo & Linda Barelli & Dario Zaninelli, 2022. "Full Implementation of Electric Mobility in a Countryside Region of Spain," Energies, MDPI, vol. 15(17), pages 1-19, August.
    2. Tiande Mo & Kin-tak Lau & Yu Li & Chi-kin Poon & Yinghong Wu & Paul K. Chu & Yang Luo, 2022. "Commercialization of Electric Vehicles in Hong Kong," Energies, MDPI, vol. 15(3), pages 1-27, January.
    3. Maciej Kruszyna & Jacek Makuch, 2023. "Mobility Nodes as an Extension of the Idea of Transfer Nodes—Solutions for Smaller Rail Stations with an Example from Poland," Sustainability, MDPI, vol. 15(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van, Tien Linh Cao & Barthelmes, Lukas & Gnann, Till & Speth, Daniel & Kagerbauer, Martin, 2021. "Addressing the gaps in market diffusion modeling of electrical vehicles: A case study from Germany for the integration of environmental policy measures," Working Papers "Sustainability and Innovation" S05/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    2. Gnann, T. & Speth, D. & Seddig, K. & Stich, M. & Schade, W. & Gómez Vilchez, J.J., 2022. "How to integrate real-world user behavior into models of the market diffusion of alternative fuels in passenger cars - An in-depth comparison of three models for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
    4. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    5. Zhang, Cen & Schmöcker, Jan-Dirk & Kuwahara, Masahiro & Nakamura, Toshiyuki & Uno, Nobuhiro, 2020. "A diffusion model for estimating adoption patterns of a one-way carsharing system in its initial years," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 135-150.
    6. Plötz, Patrick & Jakobsson, Niklas & Sprei, Frances, 2017. "On the distribution of individual daily driving distances," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 213-227.
    7. Viri, Riku & Mäkinen, Johanna & Liimatainen, Heikki, 2021. "Modelling car fleet renewal in Finland: A model and development speed-based scenarios," Transport Policy, Elsevier, vol. 112(C), pages 63-79.
    8. Globisch, Joachim & Plötz, Patrick & Dütschke, Elisabeth & Wietschel, Martin, 2019. "Consumer preferences for public charging infrastructure for electric vehicles," Transport Policy, Elsevier, vol. 81(C), pages 54-63.
    9. Ensslen, Axel & Gnann, Till & Jochem, Patrick & Plötz, Patrick & Dütschke, Elisabeth & Fichtner, Wolf, 2020. "Can product service systems support electric vehicle adoption?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 343-359.
    10. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    12. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2019. "A review of designing empirically grounded agent-based models of innovation diffusion: Development process, conceptual foundation and research agenda," Contributions of the Institute for Infrastructure and Resources Management 01/2019, University of Leipzig, Institute for Infrastructure and Resources Management.
    13. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    14. Xie, Fei & Lin, Zhenhong, 2017. "Market-driven automotive industry compliance with fuel economy and greenhouse gas standards: Analysis based on consumer choice," Energy Policy, Elsevier, vol. 108(C), pages 299-311.
    15. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    16. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    17. Gnann, Till & Speth, Daniel & Plötz, Patrick & Wietschel, Martin & Krail, Michael, 2022. "Markthochlaufszenarien für Elektrofahrzeuge: Rückblick und Ausblick bis 2030," Working Papers "Sustainability and Innovation" S05/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).
    18. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    19. Scheller, Fabian & Johanning, Simon & Bruckner, Thomas, 2018. "IRPsim: A techno-socio-economic energy system model vision for business strategy assessment at municipal level," Contributions of the Institute for Infrastructure and Resources Management 02/2018, University of Leipzig, Institute for Infrastructure and Resources Management.
    20. Sykes, Maxwell & Axsen, Jonn, 2017. "No free ride to zero-emissions: Simulating a region's need to implement its own zero-emissions vehicle (ZEV) mandate to achieve 2050 GHG targets," Energy Policy, Elsevier, vol. 110(C), pages 447-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5251-:d:621246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.