IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3236-d566961.html
   My bibliography  Save this article

A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines

Author

Listed:
  • Phong B. Dao

    (Department of Robotics and Mechatronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

This paper presents a cumulative sum (CUSUM)-based approach for condition monitoring and fault diagnosis of wind turbines (WTs) using SCADA data. The main ideas are to first form a multiple linear regression model using data collected in normal operation state, then monitor the stability of regression coefficients of the model on new observations, and detect a structural change in the form of coefficient instability using CUSUM tests. The method is applied for on-line condition monitoring of a WT using temperature-related SCADA data. A sequence of CUSUM test statistics is used as a damage-sensitive feature in a control chart scheme. If the sequence crosses either upper or lower critical line after some recursive regression iterations, then it indicates the occurrence of a fault in the WT. The method is validated using two case studies with known faults. The results show that the method can effectively monitor the WT and reliably detect abnormal problems.

Suggested Citation

  • Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3236-:d:566961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
    2. Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
    3. Yolanda Vidal & Francesc Pozo & Christian Tutivén, 2018. "Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data," Energies, MDPI, vol. 11(11), pages 1-18, November.
    4. Diego Comin & Danial Lashkari & Martí Mestieri, 2021. "Structural Change With Long‐Run Income and Price Effects," Econometrica, Econometric Society, vol. 89(1), pages 311-374, January.
    5. Mehdi Baghli & Claude Delpha & Demba Diallo & Abdelhamid Hallouche & David Mba & Tianzhen Wang, 2019. "Three-Level NPC Inverter Incipient Fault Detection and Classification using Output Current Statistical Analysis," Energies, MDPI, vol. 12(7), pages 1-20, April.
    6. Paul Turner, 2010. "Power properties of the CUSUM and CUSUMSQ tests for parameter instability," Applied Economics Letters, Taylor & Francis Journals, vol. 17(11), pages 1049-1053.
    7. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    8. Logan T Lewis & Ryan Monarch & Michael Sposi & Jing Zhang, 2022. "Structural Change and Global Trade," Journal of the European Economic Association, European Economic Association, vol. 20(1), pages 476-512.
    9. Pinjia Zhang & Delong Lu, 2019. "A Survey of Condition Monitoring and Fault Diagnosis toward Integrated O&M for Wind Turbines," Energies, MDPI, vol. 12(14), pages 1-22, July.
    10. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    11. Jaromír Antoch & Jan Hanousek & Lajos Horváth & Marie Hušková & Shixuan Wang, 2019. "Structural breaks in panel data: Large number of panels and short length time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 828-855, August.
    12. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    13. Kleiber, Christian, 2016. "Structural Change in (Economic) Time Series," Working papers 2016/06, Faculty of Business and Economics - University of Basel.
    14. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    15. Kusiak, Andrew & Li, Wenyan, 2011. "The prediction and diagnosis of wind turbine faults," Renewable Energy, Elsevier, vol. 36(1), pages 16-23.
    16. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    17. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    18. Cheng-Few Lee & John C. Lee (ed.), 2015. "Handbook of Financial Econometrics and Statistics," Springer Books, Springer, edition 127, number 978-1-4614-7750-1, September.
    19. Kramer, Walter & Ploberger, Werner & Alt, Raimund, 1988. "Testing for Structural Change in Dynamic Models," Econometrica, Econometric Society, vol. 56(6), pages 1355-1369, November.
    20. Achim Zeileis & Friedrich Leisch & Christian Kleiber & Kurt Hornik, 2005. "Monitoring structural change in dynamic econometric models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121, January.
    21. Peng Qian & Xiandong Ma & Dahai Zhang, 2017. "Estimating Health Condition of the Wind Turbine Drivetrain System," Energies, MDPI, vol. 10(10), pages 1-19, October.
    22. Konrad Zolna & Phong B. Dao & Wieslaw J. Staszewski & Tomasz Barszcz, 2015. "Nonlinear Cointegration Approach for Condition Monitoring of Wind Turbines," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    2. Sarah Barber & Luiz Andre Moyses Lima & Yoshiaki Sakagami & Julian Quick & Effi Latiffianti & Yichao Liu & Riccardo Ferrari & Simon Letzgus & Xujie Zhang & Florian Hammer, 2022. "Enabling Co-Innovation for a Successful Digital Transformation in Wind Energy Using a New Digital Ecosystem and a Fault Detection Case Study," Energies, MDPI, vol. 15(15), pages 1-32, August.
    3. Wang, Ziqi & Liu, Changliang & Yan, Feng, 2022. "Condition monitoring of wind turbine based on incremental learning and multivariate state estimation technique," Renewable Energy, Elsevier, vol. 184(C), pages 343-360.
    4. Phong B. Dao, 2023. "On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data," Energies, MDPI, vol. 16(5), pages 1-17, March.
    5. Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
    6. Chen, Yinuo & Tian, Zhigang & He, Rui & Wang, Yifei & Xie, Shuyi, 2023. "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Sarah Barber & Unai Izagirre & Oscar Serradilla & Jon Olaizola & Ekhi Zugasti & Jose Ignacio Aizpurua & Ali Eftekhari Milani & Frank Sehnke & Yoshiaki Sakagami & Charles Henderson, 2023. "Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation," Energies, MDPI, vol. 16(8), pages 1-23, April.
    8. Erginbay Ugurlu & Irena Jindřichovská, 2022. "Effect of COVID-19 on International Trade among the Visegrad Countries," JRFM, MDPI, vol. 15(2), pages 1-20, January.
    9. Bruce Stephen, 2022. "Machine Learning Applications in Power System Condition Monitoring," Energies, MDPI, vol. 15(5), pages 1-2, March.
    10. Wenbin Du & You Wu & Yunliang Zhang & Ya Gao, 2022. "The Impact Effect of Coal Price Fluctuations on China’s Agricultural Product Price," Sustainability, MDPI, vol. 14(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
    2. Jan J. J. Groen & George Kapetanios & Simon Price, 2013. "Multivariate Methods For Monitoring Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 250-274, March.
    3. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    4. Anatolyev Stanislav & Kosenok Grigory, 2018. "Sequential Testing with Uniformly Distributed Size," Journal of Time Series Econometrics, De Gruyter, vol. 10(2), pages 1-22, July.
    5. Otto, Sven & Breitung, Jörg, 2020. "Backward CUSUM for Testing and Monitoring Structural Change," VfS Annual Conference 2020 (Virtual Conference): Gender Economics 224533, Verein für Socialpolitik / German Economic Association.
    6. Sven Otto & Jorg Breitung, 2020. "Backward CUSUM for Testing and Monitoring Structural Change with an Application to COVID-19 Pandemic Data," Papers 2003.02682, arXiv.org, revised Mar 2022.
    7. Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
    8. Eklund, Jana & Kapetanios, George & Price, Simon, 2010. "Forecasting in the presence of recent structural change," Bank of England working papers 406, Bank of England.
    9. Abhijit Sharma & Kelvin G Balcombe & Iain M Fraser, 2009. "Non-renewable resource prices: Structural breaks and long term trends," Economics Bulletin, AccessEcon, vol. 29(2), pages 805-819.
    10. Christis Katsouris, 2023. "Testing for Structural Change under Nonstationarity," Papers 2302.02370, arXiv.org.
    11. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
    12. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    13. Dao, Phong B., 2022. "On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines," Applied Energy, Elsevier, vol. 318(C).
    14. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    15. Zeileis, Achim & Shah, Ajay & Patnaik, Ila, 2010. "Testing, monitoring, and dating structural changes in exchange rate regimes," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1696-1706, June.
    16. Pere Marti-Puig & Alejandro Blanco-M & Juan José Cárdenas & Jordi Cusidó & Jordi Solé-Casals, 2019. "Feature Selection Algorithms for Wind Turbine Failure Prediction," Energies, MDPI, vol. 12(3), pages 1-18, January.
    17. Aue, Alexander & Horváth, Lajos & Reimherr, Matthew L., 2009. "Delay times of sequential procedures for multiple time series regression models," Journal of Econometrics, Elsevier, vol. 149(2), pages 174-190, April.
    18. Christis Katsouris, 2022. "Partial Sum Processes of Residual-Based and Wald-type Break-Point Statistics in Time Series Regression Models," Papers 2202.00141, arXiv.org, revised Feb 2022.
    19. Achim Zeileis, 2005. "A Unified Approach to Structural Change Tests Based on ML Scores, F Statistics, and OLS Residuals," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 445-466.
    20. Yazgan, M. Ege & Özkan, Harun, 2015. "Detecting structural changes using wavelets," Finance Research Letters, Elsevier, vol. 12(C), pages 23-37.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3236-:d:566961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.