IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2067-d348298.html
   My bibliography  Save this article

Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol

Author

Listed:
  • Nilsa Duarte da Silva Lima

    (Postgraduate Program in Production Engineering, Universidade Paulista - UNIP, Dr. Bacelar Street 1212, 04026002 São Paulo, Brazil)

  • Irenilza de Alencar Nääs

    (Postgraduate Program in Production Engineering, Universidade Paulista - UNIP, Dr. Bacelar Street 1212, 04026002 São Paulo, Brazil)

  • João Gilberto Mendes dos Reis

    (Postgraduate Program in Production Engineering, Universidade Paulista - UNIP, Dr. Bacelar Street 1212, 04026002 São Paulo, Brazil)

  • Raquel Baracat Tosi Rodrigues da Silva

    (Postgraduate Program in Production Engineering, Universidade Paulista - UNIP, Dr. Bacelar Street 1212, 04026002 São Paulo, Brazil)

Abstract

The present study aimed to assess and classify energy-environmental efficiency levels to reduce greenhouse gas emissions in the production, commercialization, and use of biofuels certified by the Brazilian National Biofuel Policy (RenovaBio). The parameters of the level of energy-environmental efficiency were standardized and categorized according to the Energy-Environmental Efficiency Rating (E-EER). The rating scale varied between lower efficiency (D) and high efficiency + (highest efficiency A+). The classification method with the J48 decision tree and naive Bayes algorithms was used to predict the models. The classification of the E-EER scores using a decision tree using the J48 algorithm and Bayesian classifiers using the naive Bayes algorithm produced decision tree models efficient at estimating the efficiency level of Brazilian ethanol producers and importers certified by the RenovaBio. The rules generated by the models can assess the level classes (efficiency scores) according to the scale discretized into high efficiency (Classification A), average efficiency (Classification B), and standard efficiency (Classification C). These results might generate an ethanol energy-environmental efficiency label for the end consumers and resellers of the product, to assist in making a purchase decision concerning its performance. The best classification model was naive Bayes, compared to the J48 decision tree. The classification of the Energy Efficiency Note levels using the naive Bayes algorithm produced a model capable of estimating the efficiency level of Brazilian ethanol to create labels.

Suggested Citation

  • Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2067-:d:348298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    3. Souza, Simone Pereira & Seabra, Joaquim E.A., 2013. "Environmental benefits of the integrated production of ethanol and biodiesel," Applied Energy, Elsevier, vol. 102(C), pages 5-12.
    4. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Wojciech Dybaś, 2019. "Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management," Energies, MDPI, vol. 12(5), pages 1-16, March.
    5. Filoso, Solange & Carmo, Janaina Braga do & Mardegan, Sílvia Fernanda & Lins, Silvia Rafaela Machado & Gomes, Taciana Figueiredo & Martinelli, Luiz Antonio, 2015. "Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1847-1856.
    6. Wang, Ming & Liu, Zhengjia & Ali Baig, Muhammad Hasan & Wang, Yongsheng & Li, Yurui & Chen, Yuanyan, 2019. "Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms," Land Use Policy, Elsevier, vol. 88(C).
    7. Richard G. Newell & Juha Siikamäki, 2014. "Nudging Energy Efficiency Behavior: The Role of Information Labels," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 555-598.
    8. María Pérez-Ortiz & Silvia Jiménez-Fernández & Pedro A. Gutiérrez & Enrique Alexandre & César Hervás-Martínez & Sancho Salcedo-Sanz, 2016. "A Review of Classification Problems and Algorithms in Renewable Energy Applications," Energies, MDPI, vol. 9(8), pages 1-27, August.
    9. Alkimim, Akenya & Clarke, Keith C., 2018. "Land use change and the carbon debt for sugarcane ethanol production in Brazil," Land Use Policy, Elsevier, vol. 72(C), pages 65-73.
    10. Mills, Bradford & Schleich, Joachim, 2010. "What's driving energy efficient appliance label awareness and purchase propensity?," Energy Policy, Elsevier, vol. 38(2), pages 814-825, February.
    11. de Andrade Junior, Milton Aurelio Uba & Valin, Hugo & Soterroni, Aline C. & Ramos, Fernando M. & Halog, Anthony, 2019. "Exploring future scenarios of ethanol demand in Brazil and their land-use implications," Energy Policy, Elsevier, vol. 134(C).
    12. Fossati, Michele & Scalco, Veridiana Atanasio & Linczuk, Vinícius Cesar Cadena & Lamberts, Roberto, 2016. "Building energy efficiency: An overview of the Brazilian residential labeling scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1216-1231.
    13. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    14. Banerjee, Abhijit & Solomon, Barry D., 2003. "Eco-labeling for energy efficiency and sustainability: a meta-evaluation of US programs," Energy Policy, Elsevier, vol. 31(2), pages 109-123, January.
    15. Lee, Siew Eang & Rajagopalan, Priyadarsini, 2008. "Building energy efficiency labeling programme in Singapore," Energy Policy, Elsevier, vol. 36(10), pages 3982-3992, October.
    16. Caldarelli, Carlos Eduardo & Gilio, Leandro, 2018. "Expansion of the sugarcane industry and its effects on land use in São Paulo: Analysis from 2000 through 2015," Land Use Policy, Elsevier, vol. 76(C), pages 264-274.
    17. Lopes, Alice do Carmo Precci & Oliveira Filho, Delly & Altoe, Leandra & Carlo, Joyce Correna & Lima, Bruna Bastos, 2016. "Energy efficiency labeling program for buildings in Brazil compared to the United States' and Portugal's," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 207-219.
    18. Vine, Edward & du Pont, Peter & Waide, Paul, 2001. "Evaluating the impact of appliance efficiency labeling programs and standards: process, impact, and market transformation evaluations," Energy, Elsevier, vol. 26(11), pages 1041-1059.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aloisio S. Nascimento Filho & Hugo Saba & Rafael G. O. dos Santos & João Gabriel A. Calmon & Marcio L. V. Araújo & Eduardo M. F. Jorge & Thiago B. Murari, 2021. "Analysis of Hydrous Ethanol Price Competitiveness after the Implementation of the Fossil Fuel Import Price Parity Policy in Brazil," Sustainability, MDPI, vol. 13(17), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bjerregaard, Casper & Møller, Niels Framroze, 2019. "The impact of EU's energy labeling policy: An econometric analysis of increased transparency in the market for cold appliances in Denmark," Energy Policy, Elsevier, vol. 128(C), pages 891-899.
    2. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    3. Jacobsen, Grant D., 2015. "Do energy prices influence investment in energy efficiency? Evidence from energy star appliances," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 94-106.
    4. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    5. Woojae Kim & Sungmin Ko & Myoungjin Oh & Ie-jung Choi & Jungwoo Shin, 2019. "Is an Incentive Policy for Energy Efficient Products Effective for Air Purifiers? The Case of South Korea," Energies, MDPI, vol. 12(9), pages 1-14, May.
    6. Franke, Melanie & Nadler, Claudia, 2019. "Energy efficiency in the German residential housing market: Its influence on tenants and owners," Energy Policy, Elsevier, vol. 128(C), pages 879-890.
    7. Karol Tucki & Olga Orynycz & Mateusz Mitoraj-Wojtanek, 2020. "Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries," Energies, MDPI, vol. 13(16), pages 1-24, August.
    8. Yu, Yanzhe & Cheng, Jie & You, Shijun & Ye, Tianzhen & Zhang, Huan & Fan, Man & Wei, Shen & Liu, Shan, 2019. "Effect of implementing building energy efficiency labeling in China: A case study in Shanghai," Energy Policy, Elsevier, vol. 133(C).
    9. Galarraga, Ibon & Abadie, Luis M. & Ansuategi, Alberto, 2013. "Efficiency, effectiveness and implementation feasibility of energy efficiency rebates: The “Renove” plan in Spain," Energy Economics, Elsevier, vol. 40(S1), pages 98-107.
    10. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    11. Felipe Encinas & Carlos Aguirre & Carlos Marmolejo-Duarte, 2018. "Sustainability Attributes in Real Estate Development: Private Perspectives on Advancing Energy Regulation in a Liberalized Market," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    12. Blasch, Julia & Filippini, Massimo & Kumar, Nilkanth, 2019. "Boundedly rational consumers, energy and investment literacy, and the display of information on household appliances," Resource and Energy Economics, Elsevier, vol. 56(C), pages 39-58.
    13. Zeng, Lei & Yu, Yang & Li, Jiayang, 2014. "China’s Promoting Energy-Efficient Products for the Benefit of the People Program in 2012: Results and analysis of the consumer impact study," Applied Energy, Elsevier, vol. 133(C), pages 22-32.
    14. Ivan Vera & Birka Wicke & Floor van der Hilst, 2020. "Spatial Variation in Environmental Impacts of Sugarcane Expansion in Brazil," Land, MDPI, vol. 9(10), pages 1-20, October.
    15. Olga Orynycz & Karol Tucki & Miron Prystasz, 2020. "Implementation of Lean Management as a Tool for Decrease of Energy Consumption and CO 2 Emissions in the Fast Food Restaurant," Energies, MDPI, vol. 13(5), pages 1-26, March.
    16. Gongyi Zhang & Chang Zhang & Hongguang Nie, 2021. "An Overview of China’s Energy Labeling Policy Portfolio: China’s Contribution to Addressing the Global Goal of Sustainable Development," SAGE Open, , vol. 11(1), pages 21582440209, January.
    17. Gasparatos, Alexandros & Doll, Christopher N.H. & Esteban, Miguel & Ahmed, Abubakari & Olang, Tabitha A., 2017. "Renewable energy and biodiversity: Implications for transitioning to a Green Economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 161-184.
    18. Lemos, S.V. & Salgado Junior, A.P. & Rebehy, P.C.P.W. & Carlucci, F.V. & Novi, J.C., 2021. "Framework for improving agro-industrial efficiency in renewable energy: Examining Brazilian bioenergy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Jia, Jun–Jun & Wu, Hua-Qing & Nie, Hong-Guang & Fan, Ying, 2019. "Modeling the willingness to pay for energy efficient residence in urban residential sector in China," Energy Policy, Elsevier, vol. 135(C).
    20. Henningsen, Geraldine & Wiese, Catharina, 2019. "Do Household Characteristics Really Matter? A Meta-Analysis on the Determinants of Households’ Energy-Efficiency Investments," MPRA Paper 101701, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2067-:d:348298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.