IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1157-d328153.html
   My bibliography  Save this article

Logistics Design for Mobile Battery Energy Storage Systems

Author

Listed:
  • Hassan S. Hayajneh

    (College of Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA)

  • Xuewei Zhang

    (College of Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA)

Abstract

Currently, there are three major barriers toward a greener energy landscape in the future: (a) Curtailed grid integration of energy from renewable sources like wind and solar; (b) The low investment attractiveness of large-scale battery energy storage systems; and, (c) Constraints from the existing electric infrastructure on the development of charging station networks to meet the increasing electrical transportation demands. A new conceptual design of mobile battery energy storage systems has been proposed in recent studies to reduce the curtailment of renewable energy while limiting the public costs of battery energy storage systems. This work designs a logistics system in which electric semi-trucks ship batteries between the battery energy storage system and electric vehicle charging stations, enabling the planning and operation of power grid independent electric vehicle charging station networks. This solution could be viable in many regions in the United States (e.g., Texas) where there are plenty of renewable resources and little congestion pressure on the road networks. With Corpus Christi, Texas and the neighboring Chapman Ranch wind farm as the test case, this work implement such a design and analyze its performance based on the simulation of its operational processes. Further, we formulate an optimization problem to find design parameters that minimize the total costs. The main design parameters include the number of trucks and batteries. The results in this work, although preliminary, will be instrumental for potential stakeholders to make investment or policy decisions.

Suggested Citation

  • Hassan S. Hayajneh & Xuewei Zhang, 2020. "Logistics Design for Mobile Battery Energy Storage Systems," Energies, MDPI, vol. 13(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1157-:d:328153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meiling He & Jiaren Shen & Xiaohui Wu & Jianqiang Luo, 2018. "Logistics Space: A Literature Review from the Sustainability Perspective," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    2. Powell, Warren B., 1987. "An operational planning model for the dynamic vehicle allocation problem with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 21(3), pages 217-232, June.
    3. Jagienka Rześny-Cieplińska & Agnieszka Szmelter-Jarosz, 2019. "Assessment of the Crowd Logistics Solutions—The Stakeholders’ Analysis Approach," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    4. Li, Wenbo & Long, Ruyin & Chen, Hong, 2016. "Consumers’ evaluation of national new energy vehicle policy in China: An analysis based on a four paradigm model," Energy Policy, Elsevier, vol. 99(C), pages 33-41.
    5. Adelheid Holl & Ilaria Mariotti, 2018. "The Geography of Logistics Firm Location: The Role of Accessibility," Networks and Spatial Economics, Springer, vol. 18(2), pages 337-361, June.
    6. Luo, Lizi & Gu, Wei & Zhou, Suyang & Huang, He & Gao, Song & Han, Jun & Wu, Zhi & Dou, Xiaobo, 2018. "Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities," Applied Energy, Elsevier, vol. 226(C), pages 1087-1099.
    7. Marielle Christiansen, 1999. "Decomposition of a Combined Inventory and Time Constrained Ship Routing Problem," Transportation Science, INFORMS, vol. 33(1), pages 3-16, February.
    8. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    9. K Fagerholt & M Christiansen, 2000. "A combined ship scheduling and allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(7), pages 834-842, July.
    10. Kumar, Indraneel & Zhalnin, Andrey & Kim, Ayoung & Beaulieu, Lionel J., 2017. "Transportation and logistics cluster competitive advantages in the U.S. regions: A cross-sectional and spatio-temporal analysis," Research in Transportation Economics, Elsevier, vol. 61(C), pages 25-36.
    11. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Jezierski & Cezary Mańkowski & Rafał Śpiewak, 2021. "Energy Savings Analysis in Logistics of a Wind Farm Repowering Process: A Case Study," Energies, MDPI, vol. 14(17), pages 1-23, September.
    2. Wojciech Leśniewski & Daniel Piątek & Konrad Marszałkowski & Wojciech Litwin, 2020. "Small Vessel with Inboard Engine Retrofitting Concepts; Real Boat Tests, Laboratory Hybrid Drive Tests and Theoretical Studies," Energies, MDPI, vol. 13(10), pages 1-13, May.
    3. Melinda Timea Fülöp & Miklós Gubán & György Kovács & Mihály Avornicului, 2021. "Economic Development Based on a Mathematical Model: An Optimal Solution Method for the Fuel Supply of International Road Transport Activity," Energies, MDPI, vol. 14(10), pages 1-22, May.
    4. Julia Giera & Ewa Kulińska, 2021. "Risk Factors in a Logistics Company Using Renewable Energy Sources," Energies, MDPI, vol. 14(23), pages 1-10, December.
    5. Hedayat Saboori & Shahram Jadid & Mehdi Savaghebi, 2021. "Optimal Management of Mobile Battery Energy Storage as a Self-Driving, Self-Powered and Movable Charging Station to Promote Electric Vehicle Adoption," Energies, MDPI, vol. 14(3), pages 1-19, January.
    6. Francisco Haces-Fernandez, 2020. "Wind Energy Implementation to Mitigate Wildfire Risk and Preemptive Blackouts," Energies, MDPI, vol. 13(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    2. Sakai, Takanori & Beziat, Adrien & Heitz, Adeline, 2020. "Location factors for logistics facilities: Location choice modeling considering activity categories," Journal of Transport Geography, Elsevier, vol. 85(C).
    3. Masilonyane Mokhele & Tholang Mokhele, 2022. "Spatial Configuration of Logistics Firms Relative to Cape Town International Airport, South Africa," Logistics, MDPI, vol. 6(3), pages 1-22, July.
    4. Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Liu, Sijing & He, Nannan & Cao, Xindan & Li, Guoqi & Jian, Ming, 2022. "Logistics cluster and its future development: A comprehensive research review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Nikolaos P. Rachaniotis & Marisa Masvoula, 2020. "A decision tool for scheduling fleets of fuel supply vessels," Operational Research, Springer, vol. 20(3), pages 1543-1557, September.
    7. Pengcheng Lv & Xiaodong Li & Haoyu Zhang & Xiang Liu & Lingzhang Kong, 2022. "Research on the Spatial and Temporal Distribution of Logistics Enterprises in Xinjiang and the Influencing Factors Based on POI Data," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    8. Persson, Jan A. & Gothe-Lundgren, Maud, 2005. "Shipment planning at oil refineries using column generation and valid inequalities," European Journal of Operational Research, Elsevier, vol. 163(3), pages 631-652, June.
    9. Marielle Christiansen & Kjetil Fagerholt, 2002. "Robust ship scheduling with multiple time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 611-625, September.
    10. Bredström, David & Rönnqvist, Mikael, 2006. "Supply Chain Optimization in Pulp Distribution using a Rolling Horizon Solution Approach," Discussion Papers 2006/17, Norwegian School of Economics, Department of Business and Management Science.
    11. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    12. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    13. Ostermeier, Manuel & Henke, Tino & Hübner, Alexander & Wäscher, Gerhard, 2021. "Multi-compartment vehicle routing problems: State-of-the-art, modeling framework and future directions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 799-817.
    14. Hennig, F. & Nygreen, B. & Christiansen, M. & Fagerholt, K. & Furman, K.C. & Song, J. & Kocis, G.R. & Warrick, P.H., 2012. "Maritime crude oil transportation – A split pickup and split delivery problem," European Journal of Operational Research, Elsevier, vol. 218(3), pages 764-774.
    15. Agra, Agostinho & Christiansen, Marielle & Delgado, Alexandrino & Simonetti, Luidi, 2014. "Hybrid heuristics for a short sea inventory routing problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 924-935.
    16. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).
    17. Gronalt, Manfred & Hartl, Richard F. & Reimann, Marc, 2003. "New savings based algorithms for time constrained pickup and delivery of full truckloads," European Journal of Operational Research, Elsevier, vol. 151(3), pages 520-535, December.
    18. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    19. Ricardo Gatica & Pablo Miranda, 2011. "Special Issue on Latin-American Research: A Time Based Discretization Approach for Ship Routing and Scheduling with Variable Speed," Networks and Spatial Economics, Springer, vol. 11(3), pages 465-485, September.
    20. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1157-:d:328153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.