IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p39-d299997.html
   My bibliography  Save this article

Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach

Author

Listed:
  • Julia Vopava

    (Chair of Energy Network Technology, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria)

  • Christian Koczwara

    (Institute of Physics, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria)

  • Anna Traupmann

    (Chair of Energy Network Technology, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria)

  • Thomas Kienberger

    (Chair of Energy Network Technology, Montanuniversitaet Leoben, Franz-Josef Straße 18, A-8700 Leoben, Austria)

Abstract

To achieve climate goals, it is necessary to decarbonise the transport sector, which requires an immediate changeover to alternative power sources (e.g., battery powered vehicles). This change will lead to an increase in the demand for electrical energy, which will cause additional stress on power grids. It is therefore necessary to evaluate energy and power requirements of a future society using e-mobility. Therefore, we present a new approach to investigate the influence of increasing e-mobility on a distribution grid level. This includes the development of a power grid model based on a cellular approach, reducing computation efforts, and allowing time and spatially resolved grid stress analysis based on different load and renewable energy source scenarios. The results show that by using the simplified grid model at least seven times, more scenarios can be calculated in the same time. In addition, we demonstrate the capability of this novel approach by analysing the influence of different penetrations of e-mobility on the grid load using a case study, which is calculated using synthetic charging load profiles based on a real-life mobility data. The results from this case study show an increase on line utilisations with increasing e-mobility and the influence of producers at the same connection point as e-mobility.

Suggested Citation

  • Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:39-:d:299997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/39/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/39/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neaimeh, Myriam & Wardle, Robin & Jenkins, Andrew M. & Yi, Jialiang & Hill, Graeme & Lyons, Padraig F. & Hübner, Yvonne & Blythe, Phil T. & Taylor, Phil C., 2015. "A probabilistic approach to combining smart meter and electric vehicle charging data to investigate distribution network impacts," Applied Energy, Elsevier, vol. 157(C), pages 688-698.
    2. Azhar Ul-Haq & Marium Azhar & Yousef Mahmoud & Aqib Perwaiz & Essam A. Al-Ammar, 2017. "Probabilistic Modeling of Electric Vehicle Charging Pattern Associated with Residential Load for Voltage Unbalance Assessment," Energies, MDPI, vol. 10(9), pages 1-18, September.
    3. Benjamin Böckl & Matthias Greiml & Lukas Leitner & Patrick Pichler & Lukas Kriechbaum & Thomas Kienberger, 2019. "HyFlow—A Hybrid Load Flow-Modelling Framework to Evaluate the Effects of Energy Storage and Sector Coupling on the Electrical Load Flows," Energies, MDPI, vol. 12(5), pages 1-25, March.
    4. Kazemi, Mohammad Amin & Sedighizadeh, Mostafa & Mirzaei, Mohammad Javad & Homaee, Omid, 2016. "Optimal siting and sizing of distribution system operator owned EV parking lots," Applied Energy, Elsevier, vol. 179(C), pages 1176-1184.
    5. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    6. Fischer, David & Harbrecht, Alexander & Surmann, Arne & McKenna, Russell, 2019. "Electric vehicles’ impacts on residential electric local profiles – A stochastic modelling approach considering socio-economic, behavioural and spatial factors," Applied Energy, Elsevier, vol. 233, pages 644-658.
    7. Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
    8. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    9. Luo, Lizi & Gu, Wei & Zhou, Suyang & Huang, He & Gao, Song & Han, Jun & Wu, Zhi & Dou, Xiaobo, 2018. "Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities," Applied Energy, Elsevier, vol. 226(C), pages 1087-1099.
    10. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    11. Pol Olivella-Rosell & Roberto Villafafila-Robles & Andreas Sumper & Joan Bergas-Jané, 2015. "Probabilistic Agent-Based Model of Electric Vehicle Charging Demand to Analyse the Impact on Distribution Networks," Energies, MDPI, vol. 8(5), pages 1-28, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    2. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    3. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    4. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.
    5. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    6. Luo, Lizi & Gu, Wei & Wu, Zhi & Zhou, Suyang, 2019. "Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation," Applied Energy, Elsevier, vol. 242(C), pages 1274-1284.
    7. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    8. Seyed Mahdi Miraftabzadeh & Michela Longo & Federica Foiadelli, 2021. "Estimation Model of Total Energy Consumptions of Electrical Vehicles under Different Driving Conditions," Energies, MDPI, vol. 14(4), pages 1-15, February.
    9. Jiang, C.X. & Jing, Z.X. & Cui, X.R. & Ji, T.Y. & Wu, Q.H., 2018. "Multiple agents and reinforcement learning for modelling charging loads of electric taxis," Applied Energy, Elsevier, vol. 222(C), pages 158-168.
    10. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    11. Pagani, M. & Korosec, W. & Chokani, N. & Abhari, R.S., 2019. "User behaviour and electric vehicle charging infrastructure: An agent-based model assessment," Applied Energy, Elsevier, vol. 254(C).
    12. Felipe Gonzalez & Marc Petit & Yannick Perez, 2021. "Plug-in behavior of electric vehicles users: Insights from a large-scale trial and impacts for grid integration studies," Post-Print hal-03363782, HAL.
    13. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    14. Se Hoon Baik & Young Gyu Jin & Yong Tae Yoon, 2018. "Determining Equipment Capacity of Electric Vehicle Charging Station Operator for Profit Maximization," Energies, MDPI, vol. 11(9), pages 1-15, September.
    15. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    16. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    17. Monika Topel & Josefine Grundius, 2020. "Load Management Strategies to Increase Electric Vehicle Penetration—Case Study on a Local Distribution Network in Stockholm," Energies, MDPI, vol. 13(18), pages 1-16, September.
    18. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    19. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    20. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:39-:d:299997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.