IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2715-d364318.html
   My bibliography  Save this article

Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario

Author

Listed:
  • Natascia Andrenacci

    (DTE-PCU-STMA, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy)

  • Roberto Ragona

    (DTE-PCU-STMA, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy)

  • Antonino Genovese

    (DTE-PCU-STMA, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy)

Abstract

The existence of an efficient and sufficiently extensive charging infrastructure network appears to be of vital importance for the widespread acceptance of electric mobility by users. The present work aims to develop a tool based on big data analysis that helps to deploy a network of charging stations which can efficiently serve the potential demand, both from the user side, improving the level of service for charging and to cover the territory in a satisfactory way, and from the business side, allowing an analysis of the potential power load. The paper integrates real world traffic data and the results of an experimental campaign on an electric vehicle to evaluate the instantaneous power demand of a fast charging station, based on a procedure for the evaluation and proper time allocation of each charge request.

Suggested Citation

  • Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2715-:d:364318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
    2. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    3. Chao-Tsung Ma, 2019. "System Planning of Grid-Connected Electric Vehicle Charging Stations and Key Technologies: A Review," Energies, MDPI, vol. 12(21), pages 1-22, November.
    4. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    5. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    6. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    7. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    8. Seongpil Cheon & Suk-Ju Kang, 2017. "An Electric Power Consumption Analysis System for the Installation of Electric Vehicle Charging Stations," Energies, MDPI, vol. 10(10), pages 1-13, October.
    9. Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Pierluigi Siano & Ramesh Krishnamoorthy & Raghu Selvaraj, 2017. "Real-Time Forecasting of EV Charging Station Scheduling for Smart Energy Systems," Energies, MDPI, vol. 10(3), pages 1-16, March.
    10. Nicholas, Michael A. & Tal, Gil & Woodjack, Justin, 2013. "California Statewide Charging Assessment Model for Plug-in Electric Vehicles: Learning from Statewide Travel Surveys," Institute of Transportation Studies, Working Paper Series qt3qz440nr, Institute of Transportation Studies, UC Davis.
    11. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    12. Li, Wenbo & Long, Ruyin & Chen, Hong & Geng, Jichao, 2017. "A review of factors influencing consumer intentions to adopt battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 318-328.
    13. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    14. Davidov, Sreten & Pantoš, Miloš, 2017. "Planning of electric vehicle infrastructure based on charging reliability and quality of service," Energy, Elsevier, vol. 118(C), pages 1156-1167.
    15. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Lizi & Gu, Wei & Zhou, Suyang & Huang, He & Gao, Song & Han, Jun & Wu, Zhi & Dou, Xiaobo, 2018. "Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities," Applied Energy, Elsevier, vol. 226(C), pages 1087-1099.
    2. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    4. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    5. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    6. Yue Wang & Zhong Liu & Jianmai Shi & Guohua Wu & Rui Wang, 2018. "Joint Optimal Policy for Subsidy on Electric Vehicles and Infrastructure Construction in Highway Network," Energies, MDPI, vol. 11(9), pages 1-21, September.
    7. Pemberton, Simon & Nobajas, Alexandre & Waller, Richard, 2021. "Rapid charging provision, multiplicity and battery electric vehicle (BEV) mobility in the UK," Journal of Transport Geography, Elsevier, vol. 95(C).
    8. Jefferson Morán & Esteban Inga, 2022. "Characterization of Load Centers for Electric Vehicles Based on Simulation of Urban Vehicular Traffic Using Geo-Referenced Environments," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    9. Micari, Salvatore & Polimeni, Antonio & Napoli, Giuseppe & Andaloro, Laura & Antonucci, Vincenzo, 2017. "Electric vehicle charging infrastructure planning in a road network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 98-108.
    10. Tu, Ran & Gai, Yijun (Jessie) & Farooq, Bilal & Posen, Daniel & Hatzopoulou, Marianne, 2020. "Electric vehicle charging optimization to minimize marginal greenhouse gas emissions from power generation," Applied Energy, Elsevier, vol. 277(C).
    11. Lukas Lanz & Bessie Noll & Tobias S. Schmidt & Bjarne Steffen, 2022. "Comparing the levelized cost of electric vehicle charging options in Europe," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    13. Tsiropoulos, Ioannis & Siskos, Pelopidas & Capros, Pantelis, 2022. "The cost of recharging infrastructure for electric vehicles in the EU in a climate neutrality context: Factors influencing investments in 2030 and 2050," Applied Energy, Elsevier, vol. 322(C).
    14. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    15. Hassan S. Hayajneh & Xuewei Zhang, 2019. "Evaluation of Electric Vehicle Charging Station Network Planning via a Co-Evolution Approach," Energies, MDPI, vol. 13(1), pages 1-11, December.
    16. Zhang, Yaoli & Liu, Xingyu & Wei, Wenshen & Peng, Tianji & Hong, Gang & Meng, Chao, 2020. "Mobile charging: A novel charging system for electric vehicles in urban areas," Applied Energy, Elsevier, vol. 278(C).
    17. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
    18. Pagani, M. & Korosec, W. & Chokani, N. & Abhari, R.S., 2019. "User behaviour and electric vehicle charging infrastructure: An agent-based model assessment," Applied Energy, Elsevier, vol. 254(C).
    19. Chen, Yu & Lin, Boqiang, 2022. "Are consumers in China’s major cities happy with charging infrastructure for electric vehicles?," Applied Energy, Elsevier, vol. 327(C).
    20. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2715-:d:364318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.