IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp1087-1099.html
   My bibliography  Save this article

Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities

Author

Listed:
  • Luo, Lizi
  • Gu, Wei
  • Zhou, Suyang
  • Huang, He
  • Gao, Song
  • Han, Jun
  • Wu, Zhi
  • Dou, Xiaobo

Abstract

Along with the rapid development of electric vehicle (EV) charging technologies, many new types of charging facilities have been utilized in electric vehicle charging stations (EVCSs). Charging facilities with different rated charging power can satisfy the charging demands from diverse EV owners, and simultaneously impact the spatial and temporal distribution of EV charging demands, which in consequence challenges the rationality and economy of EVCS allocation schemes. Based on this background, this paper indicates that EVCSs should be regarded to comprise multi-types of charging facilities during the planning stage, and a new optimization model is proposed for the target of minimizing the annualized social cost of whole EV charging system. To process the complexity of the optimization model, a two-step equivalence is proposed and applied. After the equivalence and some exact relaxation, the proposed optimization model has been transformed into the type of mixed integer second-order cone programming (MISOCP), which can be efficiently solved by appropriate mathematical methods. To demonstrate the feasibility and effectiveness of the proposed approach, a practical urban area fed by a 31-bus distribution system in China has been used as the test system and the numerical results are presented and analyzed.

Suggested Citation

  • Luo, Lizi & Gu, Wei & Zhou, Suyang & Huang, He & Gao, Song & Han, Jun & Wu, Zhi & Dou, Xiaobo, 2018. "Optimal planning of electric vehicle charging stations comprising multi-types of charging facilities," Applied Energy, Elsevier, vol. 226(C), pages 1087-1099.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:1087-1099
    DOI: 10.1016/j.apenergy.2018.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    2. Kazemi, Mohammad Amin & Sedighizadeh, Mostafa & Mirzaei, Mohammad Javad & Homaee, Omid, 2016. "Optimal siting and sizing of distribution system operator owned EV parking lots," Applied Energy, Elsevier, vol. 179(C), pages 1176-1184.
    3. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    4. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    5. Ferrero, Enrico & Alessandrini, Stefano & Balanzino, Alessia, 2016. "Impact of the electric vehicles on the air pollution from a highway," Applied Energy, Elsevier, vol. 169(C), pages 450-459.
    6. Awasthi, Abhishek & Venkitusamy, Karthikeyan & Padmanaban, Sanjeevikumar & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Singh, Asheesh K., 2017. "Optimal planning of electric vehicle charging station at the distribution system using hybrid optimization algorithm," Energy, Elsevier, vol. 133(C), pages 70-78.
    7. Zhang, Li & Shaffer, Brendan & Brown, Tim & Scott Samuelsen, G., 2015. "The optimization of DC fast charging deployment in California," Applied Energy, Elsevier, vol. 157(C), pages 111-122.
    8. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    9. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    10. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    11. Davidov, Sreten & Pantoš, Miloš, 2017. "Planning of electric vehicle infrastructure based on charging reliability and quality of service," Energy, Elsevier, vol. 118(C), pages 1156-1167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan S. Hayajneh & Xuewei Zhang, 2019. "Evaluation of Electric Vehicle Charging Station Network Planning via a Co-Evolution Approach," Energies, MDPI, vol. 13(1), pages 1-11, December.
    2. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.
    3. Pagani, M. & Korosec, W. & Chokani, N. & Abhari, R.S., 2019. "User behaviour and electric vehicle charging infrastructure: An agent-based model assessment," Applied Energy, Elsevier, vol. 254(C).
    4. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Heymann, Fabian, 2021. "Spatial connection cost minimization of EV fast charging stations in electric distribution networks using local search and graph theory," Energy, Elsevier, vol. 235(C).
    5. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    6. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    7. Xiang, Yue & Liu, Junyong & Li, Ran & Li, Furong & Gu, Chenghong & Tang, Shuoya, 2016. "Economic planning of electric vehicle charging stations considering traffic constraints and load profile templates," Applied Energy, Elsevier, vol. 178(C), pages 647-659.
    8. Luo, Lizi & Gu, Wei & Wu, Zhi & Zhou, Suyang, 2019. "Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation," Applied Energy, Elsevier, vol. 242(C), pages 1274-1284.
    9. Jefferson Morán & Esteban Inga, 2022. "Characterization of Load Centers for Electric Vehicles Based on Simulation of Urban Vehicular Traffic Using Geo-Referenced Environments," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    10. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    11. Davidov, Sreten & Pantoš, Miloš, 2019. "Optimization model for charging infrastructure planning with electric power system reliability check," Energy, Elsevier, vol. 166(C), pages 886-894.
    12. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Christos Karolemeas & Stefanos Tsigdinos & Panagiotis G. Tzouras & Alexandros Nikitas & Efthimios Bakogiannis, 2021. "Determining Electric Vehicle Charging Station Location Suitability: A Qualitative Study of Greek Stakeholders Employing Thematic Analysis and Analytical Hierarchy Process," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    14. Ahmed Abdalrahman & Weihua Zhuang, 2017. "A Survey on PEV Charging Infrastructure: Impact Assessment and Planning," Energies, MDPI, vol. 10(10), pages 1-25, October.
    15. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    16. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    17. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    18. Arlt, Marie-Louise & Astier, Nicolas, 2023. "Do retail businesses have efficient incentives to invest in public charging stations for electric vehicles?," Energy Economics, Elsevier, vol. 124(C).
    19. Viktor Slednev & Patrick Jochem & Wolf Fichtner, 2022. "Impacts of electric vehicles on the European high and extra high voltage power grid," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 824-837, June.
    20. Milan Straka & Pasquale De Falco & Gabriella Ferruzzi & Daniela Proto & Gijs van der Poel & Shahab Khormali & v{L}ubov{s} Buzna, 2019. "Predicting popularity of EV charging infrastructure from GIS data," Papers 1910.02498, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:1087-1099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.