IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp427-437.html
   My bibliography  Save this article

Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration

Author

Listed:
  • Kuang, Yanqing
  • Chen, Yang
  • Hu, Mengqi
  • Yang, Dong

Abstract

The electric vehicle (EV) can be utilized as a dynamically configurable dispersed energy storage in the vehicle-to-grid (V2G) and vehicle-to-building (V2B) operation mode to balance the energy demand between buildings and EVs. This paper proposes a mixed integer linear programming based collaborative decision model to study the energy sharing between a building and an EV charging station (CS). The building has its distributed generator, and electric and thermal energy storage, and the CS has its own renewable energy source. To model the V2G/V2B integration, we introduce three sets of decision variables to represent the energy exchange among building, CS and power grid. A set of parameters are introduced to model the driver behaviors, such as initial and desired state of charge level of EV battery, and available hours of EV, and sixteen different building categories (e.g., office, restaurant, hotel, warehouse, etc.) are studied. The impacts of driver behaviors and building categories on the economic performance of V2G/V2B integration are characterized and analyzed. The results from this research can recommend best V2G/V2B integration considering various driver behaviors and building categories which can provide valuable insight for smart community design.

Suggested Citation

  • Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:427-437
    DOI: 10.1016/j.apenergy.2017.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191730870X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    2. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2016. "Vehicle to Grid regulation services of electric delivery trucks: Economic and environmental benefit analysis," Applied Energy, Elsevier, vol. 170(C), pages 161-175.
    3. Hu, Mengqi, 2015. "A data-driven feed-forward decision framework for building clusters operation under uncertainty," Applied Energy, Elsevier, vol. 141(C), pages 229-237.
    4. García-Villalobos, J. & Zamora, I. & Knezović, K. & Marinelli, M., 2016. "Multi-objective optimization control of plug-in electric vehicles in low voltage distribution networks," Applied Energy, Elsevier, vol. 180(C), pages 155-168.
    5. Stadler, M. & Kloess, M. & Groissböck, M. & Cardoso, G. & Sharma, R. & Bozchalui, M.C. & Marnay, C., 2013. "Electric storage in California’s commercial buildings," Applied Energy, Elsevier, vol. 104(C), pages 711-722.
    6. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    7. Falahati, Saber & Taher, Seyed Abbas & Shahidehpour, Mohammad, 2016. "Grid frequency control with electric vehicles by using of an optimized fuzzy controller," Applied Energy, Elsevier, vol. 178(C), pages 918-928.
    8. Chen, Yang & Hu, Mengqi, 2016. "Balancing collective and individual interests in transactive energy management of interconnected micro-grid clusters," Energy, Elsevier, vol. 109(C), pages 1075-1085.
    9. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    10. Hu, Mengqi & Weir, Jeffery D. & Wu, Teresa, 2012. "Decentralized operation strategies for an integrated building energy system using a memetic algorithm," European Journal of Operational Research, Elsevier, vol. 217(1), pages 185-197.
    11. Nurre, Sarah G. & Bent, Russell & Pan, Feng & Sharkey, Thomas C., 2014. "Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid," Energy Policy, Elsevier, vol. 67(C), pages 364-377.
    12. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
    13. Karan, Ebrahim & Mohammadpour, Atefeh & Asadi, Somayeh, 2016. "Integrating building and transportation energy use to design a comprehensive greenhouse gas mitigation strategy," Applied Energy, Elsevier, vol. 165(C), pages 234-243.
    14. Mu, Yunfei & Wu, Jianzhong & Jenkins, Nick & Jia, Hongjie & Wang, Chengshan, 2014. "A Spatial–Temporal model for grid impact analysis of plug-in electric vehicles," Applied Energy, Elsevier, vol. 114(C), pages 456-465.
    15. Foley, Aoife & Tyther, Barry & Calnan, Patrick & Ó Gallachóir, Brian, 2013. "Impacts of Electric Vehicle charging under electricity market operations," Applied Energy, Elsevier, vol. 101(C), pages 93-102.
    16. Gough, Rebecca & Dickerson, Charles & Rowley, Paul & Walsh, Chris, 2017. "Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage," Applied Energy, Elsevier, vol. 192(C), pages 12-23.
    17. Hoogvliet, T.W. & Litjens, G.B.M.A. & van Sark, W.G.J.H.M., 2017. "Provision of regulating- and reserve power by electric vehicle owners in the Dutch market," Applied Energy, Elsevier, vol. 190(C), pages 1008-1019.
    18. Noori, Mehdi & Zhao, Yang & Onat, Nuri C. & Gardner, Stephanie & Tatari, Omer, 2016. "Light-duty electric vehicles to improve the integrity of the electricity grid through Vehicle-to-Grid technology: Analysis of regional net revenue and emissions savings," Applied Energy, Elsevier, vol. 168(C), pages 146-158.
    19. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    20. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    21. Dai, Rui & Hu, Mengqi & Yang, Dong & Chen, Yang, 2015. "A collaborative operation decision model for distributed building clusters," Energy, Elsevier, vol. 84(C), pages 759-773.
    22. Cardoso, G. & Stadler, M. & Bozchalui, M.C. & Sharma, R. & Marnay, C. & Barbosa-Póvoa, A. & Ferrão, P., 2014. "Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules," Energy, Elsevier, vol. 64(C), pages 17-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).
    2. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Increasing self-consumption of renewable energy through the Building to Vehicle to Building approach applied to multiple users connected in a virtual micro-grid," Renewable Energy, Elsevier, vol. 159(C), pages 1165-1176.
    3. Ghafoori, Mahdi & Abdallah, Moatassem & Kim, Serena, 2023. "Electricity peak shaving for commercial buildings using machine learning and vehicle to building (V2B) system," Applied Energy, Elsevier, vol. 340(C).
    4. Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Xiaolin Chu & Yuntian Ge & Xue Zhou & Lin Li & Dong Yang, 2020. "Modeling and Analysis of Electric Vehicle-Power Grid-Manufacturing Facility (EPM) Energy Sharing System under Time-of-Use Electricity Tariff," Sustainability, MDPI, vol. 12(12), pages 1-27, June.
    6. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    7. Barone, G. & Buonomano, A. & Calise, F. & Forzano, C. & Palombo, A., 2019. "Building to vehicle to building concept toward a novel zero energy paradigm: Modelling and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 625-648.
    8. Zhou, Yuekuan, 2023. "Sustainable energy sharing districts with electrochemical battery degradation in design, planning, operation and multi-objective optimisation," Renewable Energy, Elsevier, vol. 202(C), pages 1324-1341.
    9. Helindu Cumaratunga & Masaki Imanaka & Muneaki Kurimoto & Shigeyuki Sugimoto & Takeyoshi Kato, 2021. "Proposal of Priority Schemes for Controlling Electric Vehicle Charging and Discharging in a Workplace Power System with High Penetration of Photovoltaic Systems," Energies, MDPI, vol. 14(22), pages 1-23, November.
    10. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    11. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    12. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    13. Cao, Sunliang & Alanne, Kari, 2018. "The techno-economic analysis of a hybrid zero-emission building system integrated with a commercial-scale zero-emission hydrogen vehicle," Applied Energy, Elsevier, vol. 211(C), pages 639-661.
    14. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    15. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    16. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    18. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Usher, John M. & Jaradat, Raed, 2018. "A collaborative energy sharing optimization model among electric vehicle charging stations, commercial buildings, and power grid," Applied Energy, Elsevier, vol. 229(C), pages 841-857.
    2. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    3. Škugor, Branimir & Deur, Joško, 2016. "A bi-level optimisation framework for electric vehicle fleet charging management," Applied Energy, Elsevier, vol. 184(C), pages 1332-1342.
    4. Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Xiaolin Chu & Yuntian Ge & Xue Zhou & Lin Li & Dong Yang, 2020. "Modeling and Analysis of Electric Vehicle-Power Grid-Manufacturing Facility (EPM) Energy Sharing System under Time-of-Use Electricity Tariff," Sustainability, MDPI, vol. 12(12), pages 1-27, June.
    6. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    7. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    8. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    9. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    11. Alqahtani, Mohammed & Hu, Mengqi, 2020. "Integrated energy scheduling and routing for a network of mobile prosumers," Energy, Elsevier, vol. 200(C).
    12. Koh, S.C.L. & Smith, L. & Miah, J. & Astudillo, D. & Eufrasio, R.M. & Gladwin, D. & Brown, S. & Stone, D., 2021. "Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Chung, Yu-Wei & Khaki, Behnam & Li, Tianyi & Chu, Chicheng & Gadh, Rajit, 2019. "Ensemble machine learning-based algorithm for electric vehicle user behavior prediction," Applied Energy, Elsevier, vol. 254(C).
    14. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    15. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
    16. Staudt, Philipp & Schmidt, Marc & Gärttner, Johannes & Weinhardt, Christof, 2018. "A decentralized approach towards resolving transmission grid congestion in Germany using vehicle-to-grid technology," Applied Energy, Elsevier, vol. 230(C), pages 1435-1446.
    17. Hung, Duong Quoc & Dong, Zhao Yang & Trinh, Hieu, 2016. "Determining the size of PHEV charging stations powered by commercial grid-integrated PV systems considering reactive power support," Applied Energy, Elsevier, vol. 183(C), pages 160-169.
    18. Xiong, Yingqi & Wang, Bin & Chu, Chi-cheng & Gadh, Rajit, 2018. "Vehicle grid integration for demand response with mixture user model and decentralized optimization," Applied Energy, Elsevier, vol. 231(C), pages 481-493.
    19. Rahman, Md Mustafizur & Gemechu, Eskinder & Oni, Abayomi Olufemi & Kumar, Amit, 2023. "The development of a techno-economic model for assessment of cost of energy storage for vehicle-to-grid applications in a cold climate," Energy, Elsevier, vol. 262(PA).
    20. Natascia Andrenacci & Roberto Ragona & Antonino Genovese, 2020. "Evaluation of the Instantaneous Power Demand of an Electric Charging Station in an Urban Scenario," Energies, MDPI, vol. 13(11), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:427-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.