IDEAS home Printed from https://ideas.repec.org/p/hhs/nhhfms/2006_017.html
   My bibliography  Save this paper

Supply Chain Optimization in Pulp Distribution using a Rolling Horizon Solution Approach

Author

Listed:
  • Bredström, David

    (Dept. of Mathematics, Linköpings universitet)

  • Rönnqvist, Mikael

    (Dept. of Finance and Management Science, Norwegian School of Economics and Business Administration)

Abstract

In this paper we consider a combined supply chain and ship routing problem for a large pulp producer in Scandinavia. The problem concerns the distribution of pulp to customers, with route scheduling of ships as a central part of modeling. It is an operative planning problem with daily ship routing decisions over a 40 days period. The pulp supply is determined by fixed production plans, and the transport flows and storages are modeled with the requirement to satisfy the demand in a cost-optimal way. We develop a mixed integer programming model with binary variables for route usage of a vessel. The problem is solved with a heuristic solution method, based on a rolling time horizon and a standard branch and bound algorithm. We apply the heuristic on problem instances with real world data, and compare results from reduced problem instances with the results from an exact branch and bound search. The computational experiments indicate that real world problems are solvable with the solution method and that it in many cases can be very efficient.

Suggested Citation

  • Bredström, David & Rönnqvist, Mikael, 2006. "Supply Chain Optimization in Pulp Distribution using a Rolling Horizon Solution Approach," Discussion Papers 2006/17, Norwegian School of Economics, Department of Business and Management Science.
  • Handle: RePEc:hhs:nhhfms:2006_017
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11250/163850
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leif H. Appelgren, 1969. "A Column Generation Algorithm for a Ship Scheduling Problem," Transportation Science, INFORMS, vol. 3(1), pages 53-68, February.
    2. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    3. Dennis E. Blumenfeld & Lawrence D. Burns & Carlos F. Daganzo & Michael C. Frick & Randolph W. Hall, 1987. "Reducing Logistics Costs at General Motors," Interfaces, INFORMS, vol. 17(1), pages 26-47, February.
    4. Fagerholt, Kjetil, 2001. "Ship scheduling with soft time windows: An optimisation based approach," European Journal of Operational Research, Elsevier, vol. 131(3), pages 559-571, June.
    5. Richard C. Larson, 1988. "Transporting Sludge to the 106-Mile Site: An Inventory/Routing Model for Fleet Sizing and Logistics System Design," Transportation Science, INFORMS, vol. 22(3), pages 186-198, August.
    6. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    7. Bredstrom, David & Lundgren, Jan T. & Ronnqvist, Mikael & Carlsson, Dick & Mason, Andrew, 2004. "Supply chain optimization in the pulp mill industry--IP models, column generation and novel constraint branches," European Journal of Operational Research, Elsevier, vol. 156(1), pages 2-22, July.
    8. Leif H. Appelgren, 1971. "Integer Programming Methods for a Vessel Scheduling Problem," Transportation Science, INFORMS, vol. 5(1), pages 64-78, February.
    9. Merce, C. & Fontan, G., 2003. "MIP-based heuristics for capacitated lotsizing problems," International Journal of Production Economics, Elsevier, vol. 85(1), pages 97-111, July.
    10. Marielle Christiansen, 1999. "Decomposition of a Combined Inventory and Time Constrained Ship Routing Problem," Transportation Science, INFORMS, vol. 33(1), pages 3-16, February.
    11. K Fagerholt & M Christiansen, 2000. "A combined ship scheduling and allocation problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(7), pages 834-842, July.
    12. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kirschstein, Thomas, 2018. "Rail transportation planning in the chemical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 112(C), pages 142-160.
    2. Christensen, Jonas & Erera, Alan & Pacino, Dario, 2019. "A rolling horizon heuristic for the stochastic cargo mix problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 200-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo Gatica & Pablo Miranda, 2011. "Special Issue on Latin-American Research: A Time Based Discretization Approach for Ship Routing and Scheduling with Variable Speed," Networks and Spatial Economics, Springer, vol. 11(3), pages 465-485, September.
    2. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    3. Hennig, F. & Nygreen, B. & Christiansen, M. & Fagerholt, K. & Furman, K.C. & Song, J. & Kocis, G.R. & Warrick, P.H., 2012. "Maritime crude oil transportation – A split pickup and split delivery problem," European Journal of Operational Research, Elsevier, vol. 218(3), pages 764-774.
    4. Kristin Uggen & Marte Fodstad & Vibeke Nørstebø, 2013. "Using and extending fix-and-relax to solve maritime inventory routing problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 355-377, July.
    5. Meng, Qiang & Wang, Shuaian & Lee, Chung-Yee, 2015. "A tailored branch-and-price approach for a joint tramp ship routing and bunkering problem," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 1-19.
    6. Roar Grønhaug & Marielle Christiansen & Guy Desaulniers & Jacques Desrosiers, 2010. "A Branch-and-Price Method for a Liquefied Natural Gas Inventory Routing Problem," Transportation Science, INFORMS, vol. 44(3), pages 400-415, August.
    7. Said El Noshokaty, 2017. "Shipping Optimisation Systems (SOS): tramp optimisation perspective," Journal of Shipping and Trade, Springer, vol. 2(1), pages 1-36, December.
    8. Gustavo Diz & Luiz Felipe Scavarda & Roger Rocha & Silvio Hamacher, 2014. "Decision Support System for PETROBRAS Ship Scheduling," Interfaces, INFORMS, vol. 44(6), pages 555-566, December.
    9. Choi, Byung-Cheon & Briskorn, Dirk & Lee, Kangbok & Leung, Joseph & Pinedo, Michael, 2008. "Allocating containers to ships with fixed departure times," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 641, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    10. Kjetil Fagerholt *, 2004. "Designing optimal routes in a liner shipping problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(4), pages 259-268, October.
    11. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    12. Nikolaos P. Rachaniotis & Marisa Masvoula, 2020. "A decision tool for scheduling fleets of fuel supply vessels," Operational Research, Springer, vol. 20(3), pages 1543-1557, September.
    13. Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), 2019. "Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics," Proceedings of the Hamburg International Conference of Logistics (HICL), Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management, volume 28, number 28.
    14. Marielle Christiansen, 1999. "Decomposition of a Combined Inventory and Time Constrained Ship Routing Problem," Transportation Science, INFORMS, vol. 33(1), pages 3-16, February.
    15. Hee-Su Hwang & Siriwat Visoldilokpun & Jay M. Rosenberger, 2008. "A Branch-and-Price-and-Cut Method for Ship Scheduling with Limited Risk," Transportation Science, INFORMS, vol. 42(3), pages 336-351, August.
    16. Liang, Zhe & He, Yan & Wu, Tao & Zhang, Canrong, 2015. "An informative column generation and decomposition method for a production planning and facility location problem," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 88-96.
    17. Rizvanolli, Anisa & Haupt, Alexander & Müller, Peter Marvin & Dornemann, Jorin, 2019. "Fleet based schedule optimisation for product tanker considering shipʼs stability," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 395-426, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    18. Hennig, F. & Nygreen, B. & Furman, K.C. & Song, J., 2015. "Alternative approaches to the crude oil tanker routing and scheduling problem with split pickup and split delivery," European Journal of Operational Research, Elsevier, vol. 243(1), pages 41-51.
    19. Persson, Jan A. & Gothe-Lundgren, Maud, 2005. "Shipment planning at oil refineries using column generation and valid inequalities," European Journal of Operational Research, Elsevier, vol. 163(3), pages 631-652, June.
    20. Sahling, Florian & Hahn, Gerd J., 2019. "Dynamic lot sizing in biopharmaceutical manufacturing," International Journal of Production Economics, Elsevier, vol. 207(C), pages 96-106.

    More about this item

    Keywords

    Supply chain; Ships; Scheduling; Mixed integer programming;
    All these keywords.

    JEL classification:

    • Q21 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Demand and Supply; Prices

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2006_017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stein Fossen (email available below). General contact details of provider: https://edirc.repec.org/data/dfnhhno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.