IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p885-d321574.html
   My bibliography  Save this article

Energy Saving Potential of Industrial Solar Collectors in Southern Regions of Russia: The Case of Krasnodar Region

Author

Listed:
  • Svetlana Ratner

    (Department of economic and mathematical modelling, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
    Economic dynamics and innovation management laboratory, V.A. Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 65 Profsoyuznaya Street, Moscow 117997, Russia)

  • Konstantin Gomonov

    (Department of economic and mathematical modelling, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia)

  • Svetlana Revinova

    (Department of economic and mathematical modelling, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia)

  • Inna Lazanyuk

    (Department of economic and mathematical modelling, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia)

Abstract

Industrial low-temperature processes are a promising sector for the introduction of solar collectors, which can partially, and in some cases, completely, replace traditional heat supply technologies. In Krasnodar Region (Russia), it is shown that the energy-saving potential when introducing industrial solar collectors only at food industry enterprises can make up 16%–17% of the total amount of thermal energy produced in the region annually. The global market of industrial solar collectors is currently developing almost without any government incentives, only due to market mechanisms, which indicates the commercial attractiveness of the technology. According to the predicted estimates, levelized cost of energy produced by industrial solar collectors in the southern regions of Russia may amount to 3.8–6.6 rubles per kWh. Even though the forecast estimates are higher than current tariffs, the economic feasibility of using solar collectors in the industry increases significantly if it is not possible to connect to centralized heating networks, as well as in the case of the seasonal load of industrial facilities. As a measure of state incentives for the development of industrial solar collectors in Russia, we offer state co-financing of demonstration projects of Russian manufacturers. This will increase the level of awareness of the population and businesses about the capabilities of this technology. Also, it will increase the technical competencies and innovative potential of companies involved in the production and installation of solar collectors.

Suggested Citation

  • Svetlana Ratner & Konstantin Gomonov & Svetlana Revinova & Inna Lazanyuk, 2020. "Energy Saving Potential of Industrial Solar Collectors in Southern Regions of Russia: The Case of Krasnodar Region," Energies, MDPI, vol. 13(4), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:885-:d:321574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/885/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/885/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Svetlana Valerievna Ratner & Pavel Dmitrievich Ratner, 2016. "Regional Energy Efficiency Programs in Russia: The Factors of Success," REGION, European Regional Science Association, vol. 3, pages 71-87.
    2. Donia, Enrica & Mineo, Angelo Marcello & Sgroi, Filippo, 2018. "A methodological approach for assessing businness investments in renewable resources from a circular economy perspective," Land Use Policy, Elsevier, vol. 76(C), pages 823-827.
    3. Orlov, Anton & Grethe, Harald & McDonald, Scott, 2013. "Carbon taxation in Russia: Prospects for a double dividend and improved energy efficiency," Energy Economics, Elsevier, vol. 37(C), pages 128-140.
    4. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
    5. Nicolli, Francesco & Vona, Francesco, 2019. "Energy market liberalization and renewable energy policies in OECD countries," Energy Policy, Elsevier, vol. 128(C), pages 853-867.
    6. Fan, Jing-Li & Wei, Shijie & Yang, Lin & Wang, Hang & Zhong, Ping & Zhang, Xian, 2019. "Comparison of the LCOE between coal-fired power plants with CCS and main low-carbon generation technologies: Evidence from China," Energy, Elsevier, vol. 176(C), pages 143-155.
    7. Bruck, Maira & Sandborn, Peter & Goudarzi, Navid, 2018. "A Levelized Cost of Energy (LCOE) model for wind farms that include Power Purchase Agreements (PPAs)," Renewable Energy, Elsevier, vol. 122(C), pages 131-139.
    8. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    9. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
    10. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    11. Matraeva, Lilia & Solodukha, Petr & Erokhin, Sergey & Babenko, Maria, 2019. "Improvement of Russian energy efficiency strategy within the framework of "green economy" concept (based on the analysis of experience of foreign countries)," Energy Policy, Elsevier, vol. 125(C), pages 478-486.
    12. Svetlana Valerievna Ratner & Vladislav Valerievich Klochkov, 2017. "Scenario Forecast for Wind Turbine Manufacturing in Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 144-151.
    13. Boute, Anatole & Zhikharev, Alexey, 2019. "Vested interests as driver of the clean energy transition: Evidence from Russia's solar energy policy," Energy Policy, Elsevier, vol. 133(C).
    14. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    15. Chang, Keh-Chin & Lin, Wei-Min & Leu, Tzong-Shyng & Chung, Kung-Ming, 2016. "Perspectives for solar thermal applications in Taiwan," Energy Policy, Elsevier, vol. 94(C), pages 25-28.
    16. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
    17. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    18. Huang, Junpeng & Tian, Zhiyong & Fan, Jianhua, 2019. "A comprehensive analysis on development and transition of the solar thermal market in China with more than 70% market share worldwide," Energy, Elsevier, vol. 174(C), pages 611-624.
    19. Huntington, Samuel C. & Rodilla, Pablo & Herrero, Ignacio & Batlle, Carlos, 2017. "Revisiting support policies for RES-E adulthood: Towards market compatible schemes," Energy Policy, Elsevier, vol. 104(C), pages 474-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iosifov Valeriy Victorovich & Evgenii Yu. Khrustalev & Sergey N. Larin & Oleg E. Khrustalev, 2021. "The Linear Programming Problem of Regional Energy System Optimization," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 281-288.
    2. Valeriy V. Iosifov & Pavel D. Ratner, 2021. "Climate Policies of G20 and New Threats for Russian Energy and Transportation Complex," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 478-486.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey S. Neustroev & Anna A. Arinushkina, 2019. "Energy Efficiency and Energy Saving in Public Schools: Federal Policy and Regional Perspectives from Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 535-541.
    2. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    3. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    4. Valeriy Victorovich Iosifov & Nairuhi Akopovna Almastyan & Alessandro Figus & Yuri Chepurko & Nguy?n Ho ng Hi?n & Marina Alexandrovna Krotova, 2017. "The problem of Harmonizing the Environmental Priorities of Electricity Generating Companies and Regional Socio-Economic Systems: DEA-based Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 7(5), pages 159-165.
    5. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    6. Nissen, Ulrich & Harfst, Nathanael, 2019. "Shortcomings of the traditional “levelized cost of energy” [LCOE] for the determination of grid parity," Energy, Elsevier, vol. 171(C), pages 1009-1016.
    7. Aquila, Giancarlo & Nakamura, Wilson Toshiro & Junior, Paulo Rotella & Souza Rocha, Luiz Celio & de Oliveira Pamplona, Edson, 2021. "Perspectives under uncertainties and risk in wind farms investments based on Omega-LCOE approach: An analysis in São Paulo state, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    8. Xiao, Kun & Yu, Bolin & Cheng, Lei & Li, Fei & Fang, Debin, 2022. "The effects of CCUS combined with renewable energy penetration under the carbon peak by an SD-CGE model: Evidence from China," Applied Energy, Elsevier, vol. 321(C).
    9. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
    10. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Yuhji Matsuo, 2022. "Re-Defining System LCOE: Costs and Values of Power Sources," Energies, MDPI, vol. 15(18), pages 1-39, September.
    12. Idel, Robert, 2022. "Levelized Full System Costs of Electricity," Energy, Elsevier, vol. 259(C).
    13. Svetlana Ratner & Yuri Chepurko & Larisa Drobyshecskaya & Anna Petrovskaya, 2018. "Management of Energy Enterprises: Energy-efficiency Approach in Solar Collectors Industry: The Case of Russia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 237-243.
    14. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    15. Rongrong Li & Rui Jiang, 2019. "Is carbon emission decline caused by economic decline? Empirical evidence from Russia," Energy & Environment, , vol. 30(4), pages 672-684, June.
    16. Anastasia Salnikova & Yuri Chepurko & Nadezhda Starkova & Hi?n Nguy?n Ho ng, 2019. "External Effects of Renewable Energy Projects: Life Cycle Analysis-based Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 256-262.
    17. Tu, Qiang & Betz, Regina & Mo, Jianlei & Fan, Ying, 2019. "The profitability of onshore wind and solar PV power projects in China - A comparative study," Energy Policy, Elsevier, vol. 132(C), pages 404-417.
    18. Fang, Xichen & Guo, Hongye & Zhang, Da & Chen, Qixin, 2021. "Cost recovery and investment barriers for renewables under market manipulation of thermal collusion," Applied Energy, Elsevier, vol. 285(C).
    19. Alberto Vargiu & Riccardo Novo & Claudio Moscoloni & Enrico Giglio & Giuseppe Giorgi & Giuliana Mattiazzo, 2022. "An Energy Cost Assessment of Future Energy Scenarios: A Case Study on San Pietro Island," Energies, MDPI, vol. 15(13), pages 1-23, June.
    20. Roy, Sanjoy, 2020. "A technical perspective on variability costs: Dependence on power variability and cross-correlations," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:885-:d:321574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.