IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v65y2021ics0928765521000269.html
   My bibliography  Save this article

Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation

Author

Listed:
  • Engelhorn, Thorsten
  • Müsgens, Felix

Abstract

This paper discusses the efficiency of promotion schemes for renewable energy sources using the example of onshore wind energy in Germany. We analyse whether the scheme incentivised a cost-minimal capacity build-up by developing a model to derive two cost-minimal benchmark scenarios, which are then compared to the historical capacity build-up between 1995 and 2015. The costs of the two cost-minimising benchmark scenarios are significantly lower than those of the historical build-up. The benchmark cost reduction largely stems from greater efficiency—fewer turbines are being constructed overall but they are being placed at better wind sites so the annual production of wind energy remains unchanged. Hence, aggregated turbine land use is also significantly down in these scenarios. Furthermore, we compare costs for consumers, as protecting consumers from price discrimination of producers is sometimes used to justify higher payments for low-wind sites. However, our results show that the efficiency gain from building at high wind sites outweighs the distributional effect, even from a consumer’s perspective.

Suggested Citation

  • Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
  • Handle: RePEc:eee:resene:v:65:y:2021:i:c:s0928765521000269
    DOI: 10.1016/j.reseneeco.2021.101241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765521000269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2021.101241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McKenna, R. & Hollnaicher, S. & Fichtner, W., 2014. "Cost-potential curves for onshore wind energy: A high-resolution analysis for Germany," Applied Energy, Elsevier, vol. 115(C), pages 103-115.
    2. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial dependence in wind and optimal wind power allocation: A copula-based analysis," Energy Policy, Elsevier, vol. 39(9), pages 4742-4754, September.
    3. Pechan, A., 2017. "Where do all the windmills go? Influence of the institutional setting on the spatial distribution of renewable energy installation," Energy Economics, Elsevier, vol. 65(C), pages 75-86.
    4. Grothe, Oliver & Müsgens, Felix, 2013. "The influence of spatial effects on wind power revenues under direct marketing rules," Energy Policy, Elsevier, vol. 58(C), pages 237-247.
    5. Claudio Marcantonini, A. Denny Ellerman, 2015. "The Implicit Carbon Price of Renewable Energy Incentives in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    6. Masurowski, Frank & Drechsler, Martin & Frank, Karin, 2016. "A spatially explicit assessment of the wind energy potential in response to an increased distance between wind turbines and settlements in Germany," Energy Policy, Elsevier, vol. 97(C), pages 343-350.
    7. Thomas Lauf & Kristina Ek & Erik Gawel & Paul Lehmann & Patrik Söderholm, 2020. "The regional heterogeneity of wind power deployment: an empirical investigation of land-use policies in Germany and Sweden," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(4), pages 751-778, March.
    8. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    9. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    10. Boeters, Stefan & Koornneef, Joris, 2011. "Supply of renewable energy sources and the cost of EU climate policy," Energy Economics, Elsevier, vol. 33(5), pages 1024-1034, September.
    11. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    12. Engelhorn, Thorsten & Müsgens, Felix, 2018. "How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany," Energy Economics, Elsevier, vol. 72(C), pages 542-557.
    13. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    14. Martin Drechsler & Jonas Egerer & Martin Lange & Frank Masurowski & Jürgen Meyerhoff & Malte Oehlmann, 2017. "Efficient and equitable spatial allocation of renewable power plants at the country scale," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
    15. Bergek, Anna & Jacobsson, Staffan, 2010. "Are tradable green certificates a cost-efficient policy driving technical change or a rent-generating machine? Lessons from Sweden 2003-2008," Energy Policy, Elsevier, vol. 38(3), pages 1255-1271, March.
    16. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    17. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    18. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    19. Wang, Min & Zhao, Jinhua, 2018. "Are renewable energy policies climate friendly? The role of capacity constraints and market power," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 41-60.
    20. Sunak, Yasin & Madlener, Reinhard, 2016. "The impact of wind farm visibility on property values: A spatial difference-in-differences analysis," Energy Economics, Elsevier, vol. 55(C), pages 79-91.
    21. Capros, Pantelis & Mantzos, Leonidas & Parousos, Leonidas & Tasios, Nikolaos & Klaassen, Ger & Van Ierland, Tom, 2011. "Analysis of the EU policy package on climate change and renewables," Energy Policy, Elsevier, vol. 39(3), pages 1476-1485, March.
    22. Wurster, Stefan & Hagemann, Christian, 2018. "Two ways to success expansion of renewable energies in comparison between Germany's federal states," Energy Policy, Elsevier, vol. 119(C), pages 610-619.
    23. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    24. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    25. Haas, Reinhard & Panzer, Christian & Resch, Gustav & Ragwitz, Mario & Reece, Gemma & Held, Anne, 2011. "A historical review of promotion strategies for electricity from renewable energy sources in EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1003-1034, February.
    26. Schmidt, J. & Lehecka, G. & Gass, V. & Schmid, E., 2013. "Where the wind blows: Assessing the effect of fixed and premium based feed-in tariffs on the spatial diversification of wind turbines," Energy Economics, Elsevier, vol. 40(C), pages 269-276.
    27. Hitaj, Claudia & Löschel, Andreas, 2019. "The impact of a feed-in tariff on wind power development in Germany," Resource and Energy Economics, Elsevier, vol. 57(C), pages 18-35.
    28. Goetzke, Frank & Rave, Tilmann, 2016. "Exploring heterogeneous growth of wind energy across Germany," Utilities Policy, Elsevier, vol. 41(C), pages 193-205.
    29. Nordensvärd, Johan & Urban, Frauke, 2015. "The stuttering energy transition in Germany: Wind energy policy and feed-in tariff lock-in," Energy Policy, Elsevier, vol. 82(C), pages 156-165.
    30. Peter Cramton, Axel Ockenfels, and Steven Stoft, 2015. "An International Carbon-Price Commitment Promotes Cooperation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    31. Klessmann, Corinna & Rathmann, Max & de Jager, David & Gazzo, Alexis & Resch, Gustav & Busch, Sebastian & Ragwitz, Mario, 2013. "Policy options for reducing the costs of reaching the European renewables target," Renewable Energy, Elsevier, vol. 57(C), pages 390-403.
    32. Meyerhoff, Jürgen & Ohl, Cornelia & Hartje, Volkmar, 2010. "Landscape externalities from onshore wind power," Energy Policy, Elsevier, vol. 38(1), pages 82-92, January.
    33. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    34. Xia, Fang & Song, Feng, 2017. "The uneven development of wind power in China: Determinants and the role of supporting policies," Energy Economics, Elsevier, vol. 67(C), pages 278-286.
    35. Grothe, Oliver & Schnieders, Julius, 2011. "Spatial Dependence in Wind and Optimal Wind Power Allocation: A Copula Based Analysis," EWI Working Papers 2011-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    36. del Río, Pablo & Cerdá, Emilio, 2014. "The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support," Energy Policy, Elsevier, vol. 64(C), pages 364-372.
    37. Drechsler, Martin & Ohl, Cornelia & Meyerhoff, Jürgen & Eichhorn, Marcus & Monsees, Jan, 2011. "Combining spatial modeling and choice experiments for the optimal spatial allocation of wind turbines," Energy Policy, Elsevier, vol. 39(6), pages 3845-3854, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    2. Mats Kröger & Karsten Neuhoff & Jörn C. Richstein, 2022. "Discriminatory Auction Design for Renewable Energy," Discussion Papers of DIW Berlin 2013, DIW Berlin, German Institute for Economic Research.
    3. Gohdes, Nicholas & Simshauser, Paul & Wilson, Clevo, 2022. "Renewable entry costs, project finance and the role of revenue quality in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 114(C).
    4. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    5. Chishti, Muhammad Zubair & Sinha, Avik & Zaman, Umer & Shahzad, Umer, 2023. "Exploring the dynamic connectedness among energy transition and its drivers: Understanding the moderating role of global geopolitical risk," Energy Economics, Elsevier, vol. 119(C).
    6. Batz Liñeiro, Taimyra & Müsgens, Felix, 2023. "Evaluating the German onshore wind auction programme: An analysis based on individual bids," Energy Policy, Elsevier, vol. 172(C).
    7. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Simshauser, Paul & Billimoria, Farhad & Rogers, Craig, 2022. "Optimising VRE capacity in Renewable Energy Zones," Energy Economics, Elsevier, vol. 113(C).
    9. Liu, Tingting & Xu, Jiuping, 2021. "Equilibrium strategy based policy shifts towards the integration of wind power in spot electricity markets: A perspective from China," Energy Policy, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    2. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    3. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    4. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    5. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    6. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    7. Obermüller, Frank, 2017. "Build Wind Capacities at Windy Locations? Assessment of System Optimal Wind Locations," EWI Working Papers 2017-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    8. Bucksteeg, Michael, 2019. "Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany," Applied Energy, Elsevier, vol. 235(C), pages 1476-1491.
    9. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    10. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    11. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    12. Meus, Jelle & De Vits, Sarah & S'heeren, Nele & Delarue, Erik & Proost, Stef, 2021. "Renewable electricity support in perfect markets: Economic incentives under diverse subsidy instruments," Energy Economics, Elsevier, vol. 94(C).
    13. Thomas Lauf & Kristina Ek & Erik Gawel & Paul Lehmann & Patrik Söderholm, 2020. "The regional heterogeneity of wind power deployment: an empirical investigation of land-use policies in Germany and Sweden," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(4), pages 751-778, March.
    14. Bjørnebye, Henrik & Hagem, Cathrine & Lind, Arne, 2018. "Optimal location of renewable power," Energy, Elsevier, vol. 147(C), pages 1203-1215.
    15. Klie, Leo & Madlener, Reinhard, 2020. "Concentration Versus Diversification: A Spatial Deployment Approach to Improve the Economics of Wind Power," FCN Working Papers 2/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2021.
    16. Engelhorn, Thorsten & Müsgens, Felix, 2018. "How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany," Energy Economics, Elsevier, vol. 72(C), pages 542-557.
    17. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    18. Salomon, Hannes & Drechsler, Martin & Reutter, Felix, 2020. "Minimum distances for wind turbines: A robustness analysis of policies for a sustainable wind power deployment," Energy Policy, Elsevier, vol. 140(C).
    19. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).
    20. May, Nils, 2017. "The impact of wind power support schemes on technology choices," Energy Economics, Elsevier, vol. 65(C), pages 343-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:65:y:2021:i:c:s0928765521000269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.