IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5713-d438638.html
   My bibliography  Save this article

A Review of Energy Management Assessment Models for Industrial Energy Efficiency

Author

Listed:
  • A S M Monjurul Hasan

    (School of Information, Systems, and Modelling, Faculty of Engineering and IT, University of Technology Sydney, 81 Broadway, Ultimo 2007, Australia)

  • Andrea Trianni

    (School of Information, Systems, and Modelling, Faculty of Engineering and IT, University of Technology Sydney, 81 Broadway, Ultimo 2007, Australia)

Abstract

The necessity to ensure energy efficiency in the industries is of significant importance to attain reduction of energy consumption and greenhouse gases emissions. Energy management is one of the effective features that ensure energy efficiency in the industries. Energy management models are the infancy in the industrial energy domain with practical guidelines towards implementation in the organizations. Despite the increased interest in energy efficiency, a gap exists concerning energy management literature and present application practices. This paper aims to methodologically review the energy management assessment models that facilitate the assessment of industrial energy management. In this context, the minimum requirements model, maturity model, energy management matrix model, and energy efficiency measures characterization framework are discussed with implications. The study concludes with interesting propositions for academia and industrial think tanks delineating few further research opportunities.

Suggested Citation

  • A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5713-:d:438638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5713/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5713/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anderson, Soren T. & Newell, Richard G., 2004. "Information programs for technology adoption: the case of energy-efficiency audits," Resource and Energy Economics, Elsevier, vol. 26(1), pages 27-50, March.
    2. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    3. Antunes, Pedro & Carreira, Paulo & Mira da Silva, Miguel, 2014. "Towards an energy management maturity model," Energy Policy, Elsevier, vol. 73(C), pages 803-814.
    4. de Groot, Henri L. F. & Verhoef, Erik T. & Nijkamp, Peter, 2001. "Energy saving by firms: decision-making, barriers and policies," Energy Economics, Elsevier, vol. 23(6), pages 717-740, November.
    5. M. S. Krishnan & C. H. Kriebel & Sunder Kekre & Tridas Mukhopadhyay, 2000. "An Empirical Analysis of Productivity and Quality in Software Products," Management Science, INFORMS, vol. 46(6), pages 745-759, June.
    6. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    7. Fleiter, Tobias & Hirzel, Simon & Worrell, Ernst, 2012. "The characteristics of energy-efficiency measures – a neglected dimension," Energy Policy, Elsevier, vol. 51(C), pages 502-513.
    8. A. S. M. Monjurul Hasan & Rakib Hossain & Rashedul Amin Tuhin & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Empirical Investigation of Barriers and Driving Forces for Efficient Energy Management Practices in Non-Energy-Intensive Manufacturing Industries of Bangladesh," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    9. Apriani Soepardi & Patrik Thollander, 2018. "Analysis of Relationships among Organizational Barriers to Energy Efficiency Improvement: A Case Study in Indonesia’s Steel Industry," Sustainability, MDPI, vol. 10(1), pages 1-13, January.
    10. Mills, Evan & Rosenfeld, Art, 1996. "Consumer non-energy benefits as a motivation for making energy-efficiency improvements," Energy, Elsevier, vol. 21(7), pages 707-720.
    11. Sorrell, Steve, 2007. "The economics of energy service contracts," Energy Policy, Elsevier, vol. 35(1), pages 507-521, January.
    12. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    13. Abdelaziz, E.A. & Saidur, R. & Mekhilef, S., 2011. "A review on energy saving strategies in industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 150-168, January.
    14. Sa, Aida & Thollander, Patrik & Cagno, Enrico, 2017. "Assessing the driving factors for energy management program adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 538-547.
    15. Harris, Jane & Anderson, Jane & Shafron, Walter, 2000. "Investment in energy efficiency: a survey of Australian firms," Energy Policy, Elsevier, vol. 28(12), pages 867-876, October.
    16. Jörg Becker & Ralf Knackstedt & Jens Pöppelbuß, 2009. "Developing Maturity Models for IT Management," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 1(3), pages 213-222, June.
    17. Ates, Seyithan Ahmet & Durakbasa, Numan M., 2012. "Evaluation of corporate energy management practices of energy intensive industries in Turkey," Energy, Elsevier, vol. 45(1), pages 81-91.
    18. Philip M. Podsakoff & Scott B. MacKenzie & Daniel G. Bachrach & Nathan P. Podsakoff, 2005. "The influence of management journals in the 1980s and 1990s," Strategic Management Journal, Wiley Blackwell, vol. 26(5), pages 473-488, May.
    19. Guilherme Luz Tortorella & Diego Fettermann, 2018. "Implementation of Industry 4.0 and lean production in Brazilian manufacturing companies," International Journal of Production Research, Taylor & Francis Journals, vol. 56(8), pages 2975-2987, April.
    20. Gangolells, Marta & Casals, Miquel & Forcada, Núria & Macarulla, Marcel & Giretti, Alberto, 2015. "Environmental impacts related to the commissioning and usage phase of an intelligent energy management system," Applied Energy, Elsevier, vol. 138(C), pages 216-223.
    21. Ngai, E.W.T & Chau, D.C.K. & Poon, J.K.L. & To, C.K.M., 2013. "Energy and utility management maturity model for sustainable manufacturing process," International Journal of Production Economics, Elsevier, vol. 146(2), pages 453-464.
    22. Fawcett, Tina & Hampton, Sam, 2020. "Why & how energy efficiency policy should address SMEs," Energy Policy, Elsevier, vol. 140(C).
    23. Worrell, Ernst & Laitner, John A & Ruth, Michael & Finman, Hodayah, 2003. "Productivity benefits of industrial energy efficiency measures," Energy, Elsevier, vol. 28(11), pages 1081-1098.
    24. Hossain, Syed Raihan & Ahmed, Istiak & Azad, Ferdous S. & Monjurul Hasan, A S M, 2020. "Empirical investigation of energy management practices in cement industries of Bangladesh," Energy, Elsevier, vol. 212(C).
    25. Palm, Jenny & Thollander, Patrik, 2010. "An interdisciplinary perspective on industrial energy efficiency," Applied Energy, Elsevier, vol. 87(10), pages 3255-3261, October.
    26. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    27. Antonio Nesticò & Piera Somma, 2019. "Comparative Analysis of Multi-Criteria Methods for the Enhancement of Historical Buildings," Sustainability, MDPI, vol. 11(17), pages 1-19, August.
    28. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    29. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    30. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    31. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    32. A S M Monjurul Hasan & Mohammad Rokonuzzaman & Rashedul Amin Tuhin & Shah Md. Salimullah & Mahfuz Ullah & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Drivers and Barriers to Industrial Energy Efficiency in Textile Industries of Bangladesh," Energies, MDPI, vol. 12(9), pages 1-19, May.
    33. Good, Nicholas & Martínez Ceseña, Eduardo A. & Zhang, Lingxi & Mancarella, Pierluigi, 2016. "Techno-economic and business case assessment of low carbon technologies in distributed multi-energy systems," Applied Energy, Elsevier, vol. 167(C), pages 158-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Angel Iturralde Carrera & Andrés Lorenzo Álvarez González & Juvenal Rodríguez-Reséndiz & José Manuel Álvarez-Alvarado, 2023. "Selection of the Energy Performance Indicator for Hotels Based on ISO 50001: A Case Study," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    2. Lin, Boqiang & Xie, Yongjing, 2022. "Analysis on operational efficiency and its influencing factors of China’s nuclear power plants," Energy, Elsevier, vol. 261(PA).
    3. Magdalena Krysiak & Aldona Kluczek, 2021. "A Multifaceted Challenge to Enhance Multicriteria Decision Support for Energy Policy," Energies, MDPI, vol. 14(14), pages 1-20, July.
    4. Jan Kaselofsky & Marika Rošā & Anda Jekabsone & Solenne Favre & Gabriel Loustalot & Michaël Toma & Jose Pablo Delgado Marín & Manuel Moreno Nicolás & Emanuele Cosenza, 2021. "Getting Municipal Energy Management Systems ISO 50001 Certified: A Study with 28 European Municipalities," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
    5. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    6. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Milena Nebojsa Rajić & Rado M. Maksimović & Pedja Milosavljević, 2022. "Energy Management Model for Sustainable Development in Hotels within WB6," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    8. He, Yong & Fu, Feifei & Liao, Nuo, 2021. "Exploring the path of carbon emissions reduction in China’s industrial sector through energy efficiency enhancement induced by R&D investment," Energy, Elsevier, vol. 225(C).
    9. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    10. Edwin Gevorkyan & Jarosław Chmiel & Bogusz Wiśnicki & Tygran Dzhuguryan & Mirosław Rucki & Volodymyr Nerubatskyi, 2022. "Smart Sustainable Production Management for City Multifloor Manufacturing Clusters: An Energy-Efficient Approach to the Choice of Ceramic Filter Sintering Technology," Energies, MDPI, vol. 15(17), pages 1-17, September.
    11. Stavros Gennitsaris & Miguel Castro Oliveira & George Vris & Antonis Bofilios & Theodora Ntinou & Ana Rita Frutuoso & Catarina Queiroga & John Giannatsis & Stella Sofianopoulou & Vassilis Dedoussis, 2023. "Energy Efficiency Management in Small and Medium-Sized Enterprises: Current Situation, Case Studies and Best Practices," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    12. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    13. Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    2. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    3. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    4. Thollander, Patrik & Backlund, Sandra & Trianni, Andrea & Cagno, Enrico, 2013. "Beyond barriers – A case study on driving forces for improved energy efficiency in the foundry industries in Finland, France, Germany, Italy, Poland, Spain, and Sweden," Applied Energy, Elsevier, vol. 111(C), pages 636-643.
    5. Andrea Trianni & Davide Accordini & Enrico Cagno, 2020. "Identification and Categorization of Factors Affecting the Adoption of Energy Efficiency Measures within Compressed Air Systems," Energies, MDPI, vol. 13(19), pages 1-51, October.
    6. Werner König & Sabine Löbbe & Stefan Büttner & Christian Schneider, 2020. "Establishing Energy Efficiency—Drivers for Energy Efficiency in German Manufacturing Small- and Medium-Sized Enterprises," Energies, MDPI, vol. 13(19), pages 1-31, October.
    7. Mette Talseth Solnørdal & Elin Anita Nilsen, 2020. "From Program to Practice: Translating Energy Management in a Manufacturing Firm," Sustainability, MDPI, vol. 12(23), pages 1-24, December.
    8. Accordini, D. & Cagno, E. & Trianni, A., 2021. "Identification and characterization of decision-making factors over industrial energy efficiency measures in electric motor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    10. Sa, Aida & Thollander, Patrik & Cagno, Enrico, 2017. "Assessing the driving factors for energy management program adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 538-547.
    11. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    12. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    14. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Trianni, Andrea & Cagno, Enrico & Farné, Stefano, 2016. "Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises," Applied Energy, Elsevier, vol. 162(C), pages 1537-1551.
    16. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    17. Finnerty, Noel & Sterling, Raymond & Contreras, Sergio & Coakley, Daniel & Keane, Marcus M., 2018. "Defining corporate energy policy and strategy to achieve carbon emissions reduction targets via energy management in non-energy intensive multi-site manufacturing organisations," Energy, Elsevier, vol. 151(C), pages 913-929.
    18. Trianni, Andrea & Cagno, Enrico & De Donatis, Alessio, 2014. "A framework to characterize energy efficiency measures," Applied Energy, Elsevier, vol. 118(C), pages 207-220.
    19. Monjurul Hasan, A S M & Trianni, Andrea & Shukla, Nagesh & Katic, Mile, 2022. "A novel characterization based framework to incorporate industrial energy management services," Applied Energy, Elsevier, vol. 313(C).
    20. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5713-:d:438638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.