IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v73y2014icp803-814.html
   My bibliography  Save this article

Towards an energy management maturity model

Author

Listed:
  • Antunes, Pedro
  • Carreira, Paulo
  • Mira da Silva, Miguel

Abstract

Energy management is becoming a priority as organizations strive to reduce energy costs, conform to regulatory requirements, and improve their corporate image. Despite the upsurge of interest in energy management standards, a gap persists between energy management literature and current implementation practices. This gap can be traced to the lack of an incremental improvement roadmap. In this paper we propose an Energy Management Maturity Model that can be used to guide organizations in their energy management implementation efforts to incrementally achieve compliance with energy management standards such as ISO 50001. The proposed maturity model is inspired on the Plan-Do-Check-Act cycle approach for continual improvement, and covers well-understood fundamental energy management activities common across energy management texts. The completeness of our proposal is then evaluated by establishing an ontology mapping against ISO 50001.

Suggested Citation

  • Antunes, Pedro & Carreira, Paulo & Mira da Silva, Miguel, 2014. "Towards an energy management maturity model," Energy Policy, Elsevier, vol. 73(C), pages 803-814.
  • Handle: RePEc:eee:enepol:v:73:y:2014:i:c:p:803-814
    DOI: 10.1016/j.enpol.2014.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514003838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    2. Chai, Kah-Hin & Yeo, Catrina, 2012. "Overcoming energy efficiency barriers through systems approach—A conceptual framework," Energy Policy, Elsevier, vol. 46(C), pages 460-472.
    3. Jörg Becker & Ralf Knackstedt & Jens Pöppelbuß, 2009. "Developing Maturity Models for IT Management," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 1(3), pages 213-222, June.
    4. Ates, Seyithan Ahmet & Durakbasa, Numan M., 2012. "Evaluation of corporate energy management practices of energy intensive industries in Turkey," Energy, Elsevier, vol. 45(1), pages 81-91.
    5. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    6. Tsung-Yung Chiu & Shang-Lien Lo & Yung-Yin Tsai, 2012. "Establishing an Integration-Energy-Practice Model for Improving Energy Performance Indicators in ISO 50001 Energy Management Systems," Energies, MDPI, vol. 5(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    2. Păunescu Carmen & Blid Laura, 2016. "Effective energy planning for improving the enterprise’s energy performance," Management & Marketing, Sciendo, vol. 11(3), pages 512-531, September.
    3. Alcázar-Ortega, Manuel & Calpe, Carmen & Theisen, Thomas & Rodríguez-García, Javier, 2015. "Certification prerequisites for activities related to the trading of demand response resources," Energy, Elsevier, vol. 93(P1), pages 705-715.
    4. Milena N. Rajić & Rado M. Maksimović & Pedja Milosavljević & Dragan Pavlović, 2019. "Energy Management System Application for Sustainable Development in Wood Industry Enterprises," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    5. Stamatis Chrysikopoulos & Panos Chountalas, 2018. "Integrating energy and environmental management systems to enable facilities to qualify for carbon funds," Energy & Environment, , vol. 29(6), pages 938-956, September.
    6. Labaka, Leire & Maraña, Patricia & Giménez, Raquel & Hernantes, Josune, 2019. "Defining the roadmap towards city resilience," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 281-296.
    7. Aneta Wysokińska-Senkus, 2021. "Determinants of Improving the Strategy of Sustainable Energy Management of Building Sustainable Value for Stakeholders—Experience of Organizations in Poland," Energies, MDPI, vol. 14(10), pages 1-18, May.
    8. Christian Stenqvist & Susanne Balslev Nielsen & Per-Otto Bengtsson, 2018. "A Tool for Sourcing Sustainable Building Renovation: The Energy Efficiency Maturity Matrix," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    9. Helena Bulińska-Stangrecka & Anna Bagieńska, 2021. "Culture-Based Green Workplace Practices as a Means of Conserving Energy and Other Natural Resources in the Manufacturing Sector," Energies, MDPI, vol. 14(19), pages 1-21, October.
    10. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley & Tortato, Ubiratã, 2018. "Measuring energy performance: A process based approach," Applied Energy, Elsevier, vol. 222(C), pages 540-553.
    11. Zhang, Zhenhua & Wang, Jing & Feng, Chao & Chen, Xi, 2023. "Do pilot zones for green finance reform and innovation promote energy savings? Evidence from China," Energy Economics, Elsevier, vol. 124(C).
    12. Mustafa Yüce & Muhsin Halis, 2016. "ISO 50001 based integrated energy management system and organization performance," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 2(2), pages 52-65.
    13. Kunle Ibukun Olatayo & Paul T. Mativenga & Annlizé L. Marnewick, 2023. "Plastic value chain and performance metric framework for optimal recycling," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 601-623, April.
    14. Katrina Benikovna Dobrova & Nadezhda Grigorevna Danilochkina & Natalia Vladimirovna Cherner & Victor Petrovich Dobrov & Peter Petrovich Dobrov & Ekaterina Nikolaevna Sepiashvili, 2018. "Innovational Management of Industrial Enterprises in the Energy Sector," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 447-458.
    15. Daniel Galvez & Manon Enjolras & Mauricio Camargo & Vincent Boly & Johan Claire, 2018. "Firm Readiness Level for Innovation Projects: A New Decision-Making Tool for Innovation Managers," Administrative Sciences, MDPI, vol. 8(1), pages 1-17, March.
    16. Nora Munguia & Javier Esquer & Hector Guzman & Janim Herrera & Jesus Gutierrez-Ruelas & Luis Velazquez, 2020. "Energy Efficiency in Public Buildings: A Step toward the UN 2030 Agenda for Sustainable Development," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    17. Fernando, Yudi & Bee, Poh Swan & Jabbour, Charbel Jose Chiappetta & Thomé, Antônio Márcio Tavares, 2018. "Understanding the effects of energy management practices on renewable energy supply chains: Implications for energy policy in emerging economies," Energy Policy, Elsevier, vol. 118(C), pages 418-428.
    18. Adalberto Ospino Castro & Carlos Robles-Algar n & Rafael Pe a Gallardo, 2019. "Analysis of Energy Management and Financial Planning in the Implementation of PV Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 1-11.
    19. Finnerty, Noel & Sterling, Raymond & Coakley, Daniel & Contreras, Sergio & Coffey, Ronan & Keane, Marcus M., 2017. "Development of a Global Energy Management System for non-energy intensive multi-site industrial organisations: A methodology," Energy, Elsevier, vol. 136(C), pages 16-31.
    20. Pasqualina Sacco & Christian Vinante & Yuri Borgianni & Guido Orzes, 2021. "Circular Economy at the Firm Level: A New Tool for Assessing Maturity and Circularity," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    21. Vichan Nakthong & Kuskana Kubaha, 2019. "Development of a Sustainability Index for an Energy Management System in Thailand," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    22. Iker Laskurain & Ander Ibarloza & Ainara Larrea & Erlantz Allur, 2017. "Contribution to Energy Management of the Main Standards for Environmental Management Systems: The Case of ISO 14001 and EMAS," Energies, MDPI, vol. 10(11), pages 1-21, November.
    23. A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.
    24. Fernando, Yudi & Hor, Wei Lin, 2017. "Impacts of energy management practices on energy efficiency and carbon emissions reduction: A survey of malaysian manufacturing firms," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 62-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    2. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    3. Noor Jalo & Ida Johansson & Mariana Andrei & Therese Nehler & Patrik Thollander, 2021. "Barriers to and Drivers of Energy Management in Swedish SMEs," Energies, MDPI, vol. 14(21), pages 1-21, October.
    4. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    5. A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.
    6. Constantine Kalangos, 2017. "Barriers and Policy Drivers to Energy Efficiency in Energy Intensive Turkish Industrial Sectors," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 110-120.
    7. Hasan, A S M Monjurul & Tuhin, Rashedul Amin & Ullah, Mahfuz & Sakib, Taiyeb Hasan & Thollander, Patrik & Trianni, Andrea, 2021. "A comprehensive investigation of energy management practices within energy intensive industries in Bangladesh," Energy, Elsevier, vol. 232(C).
    8. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    9. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    10. Vichan Nakthong & Kuskana Kubaha, 2019. "Development of a Sustainability Index for an Energy Management System in Thailand," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    11. Iftikhar Ahmad & Muhammad Salman Arif & Izzat Iqbal Cheema & Patrik Thollander & Masroor Ahmed Khan, 2020. "Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    12. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Virkki-Hatakka, Terhi & Luoranen, Mika & Ikävalko, Markku, 2013. "Differences in perception: How the experts look at energy efficiency (findings from a Finnish survey)," Energy Policy, Elsevier, vol. 60(C), pages 499-508.
    14. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    15. Zhang, Dayong & Li, Jun & Ji, Qiang, 2020. "Does better access to credit help reduce energy intensity in China? Evidence from manufacturing firms," Energy Policy, Elsevier, vol. 145(C).
    16. Trianni, Andrea & Cagno, Enrico & Bertolotti, Matteo & Thollander, Patrik & Andersson, Elias, 2019. "Energy management: A practice-based assessment model," Applied Energy, Elsevier, vol. 235(C), pages 1614-1636.
    17. Milena N. Rajić & Rado M. Maksimović & Pedja Milosavljević & Dragan Pavlović, 2019. "Energy Management System Application for Sustainable Development in Wood Industry Enterprises," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    18. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
    19. Carlos Herce & Enrico Biele & Chiara Martini & Marcello Salvio & Claudia Toro, 2021. "Impact of Energy Monitoring and Management Systems on the Implementation and Planning of Energy Performance Improved Actions: An Empirical Analysis Based on Energy Audits in Italy," Energies, MDPI, vol. 14(16), pages 1-21, August.
    20. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:73:y:2014:i:c:p:803-814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.