IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3910-d276890.html
   My bibliography  Save this article

Planning of the Multi-Energy Circular System Coupled with Waste Processing Base: A Case from China

Author

Listed:
  • Luqing Zhang

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China)

  • Aikang Chen

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China
    State Grid (Suzhou) City & Energy Research Institute Co., Ltd., Huqiu District, Suzhou 215010, China)

  • Han Gu

    (Electric Power Planning & Engineering Institute, Xicheng District, Beijing 100011, China)

  • Xitian Wang

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China)

  • Da Xie

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Minhang District, Shanghai 200240, China)

  • Chenghong Gu

    (Department of Electronic and Electrical Engineering, University of Bath, Calverton Down, Bath BA2 7AY, UK)

Abstract

With the accelerated development of urbanization, waste disposal has become a tough problem. If waste cannot be disposed properly, it will lead to environment pollution and waste of resources. Since the energy utilization of the Waste Processing Base (WPB) has not been considered thoroughly, optimal planning of the Multi-Energy Circular System (MECS) coupled with the WPB is studied in this paper. Based on a typical WPB, this paper adds Power to Gas (P2G) and energy storage equipment, and applies a bi-level optimization model to optimize energy utilization. The minimum of total annual cost is the objective of the upper model, whose decision variables are the capacity of each equipment. The minimum annual operating cost is the lower model’s objective whose decision variables are the control parameters of certain energy equipment. Finally, a practical WPB is used for the demonstration and simulation of the proposed planning scheme. The analysis of the simulation results indicates that the collaborative optimization of the MECS coupled with WPB is effective, and improves the benefits of energy, economy, and environment enormously.

Suggested Citation

  • Luqing Zhang & Aikang Chen & Han Gu & Xitian Wang & Da Xie & Chenghong Gu, 2019. "Planning of the Multi-Energy Circular System Coupled with Waste Processing Base: A Case from China," Energies, MDPI, vol. 12(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3910-:d:276890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseinpour, Javad & Chitsaz, Ata & Liu, Lin & Gao, Yang, 2020. "Simulation of eco-friendly and affordable energy production via solid oxide fuel cell integrated with biomass gasification plant using various gasification agents," Renewable Energy, Elsevier, vol. 145(C), pages 757-771.
    2. Huang, G. H. & Baetz, B. W. & Patry, G. G., 1995. "Grey fuzzy integer programming: An application to regional waste management planning under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 17-38, March.
    3. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    4. Fathabadi, Hassan, 2019. "Two novel methods for converting the waste heat of PV modules caused by temperature rise into electric power," Renewable Energy, Elsevier, vol. 142(C), pages 543-551.
    5. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa, 2010. "Optimization of capacity and operation for CCHP system by genetic algorithm," Applied Energy, Elsevier, vol. 87(4), pages 1325-1335, April.
    6. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    7. Montorsi, L. & Milani, M. & Venturelli, M., 2018. "Economic assessment of an integrated waste to energy system for an urban sewage treatment plant: A numerical approach," Energy, Elsevier, vol. 158(C), pages 105-110.
    8. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2013. "Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area," Energy, Elsevier, vol. 55(C), pages 1014-1024.
    9. Weijian Du & Mengjie Li, 2019. "Government support and innovation for new energy firms in China," Applied Economics, Taylor & Francis Journals, vol. 51(25), pages 2754-2763, May.
    10. Syed Safeer Mehdi Shamsi & Assmelash A. Negash & Gyu Baek Cho & Young Min Kim, 2019. "Waste Heat and Water Recovery System Optimization for Flue Gas in Thermal Power Plants," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Longxi & Mu, Hailin & Li, Nan & Li, Miao, 2016. "Economic and environmental optimization for distributed energy resource systems coupled with district energy networks," Energy, Elsevier, vol. 109(C), pages 947-960.
    2. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
    3. Hu, Mengqi & Cho, Heejin, 2014. "A probability constrained multi-objective optimization model for CCHP system operation decision support," Applied Energy, Elsevier, vol. 116(C), pages 230-242.
    4. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    5. Chunguang Bai & Joseph Sarkis, 2013. "Green information technology strategic justification and evaluation," Information Systems Frontiers, Springer, vol. 15(5), pages 831-847, November.
    6. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    7. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    8. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    9. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.
    10. Tian, Chuyin & Huang, Guohe & Xie, Yulei, 2021. "Systematic evaluation for hydropower exploitation rationality in hydro-dominant area: A case study of Sichuan Province, China," Renewable Energy, Elsevier, vol. 168(C), pages 1096-1111.
    11. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    12. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    13. Liang, M.S. & Huang, G.H. & Chen, J.P. & Li, Y.P., 2022. "Development of non-deterministic energy-water-carbon nexus planning model: A case study of Shanghai, China," Energy, Elsevier, vol. 246(C).
    14. Xu, Y. & Huang, G.H. & Qin, X.S. & Cao, M.F., 2009. "SRCCP: A stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 352-363.
    15. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    16. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    17. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    18. Chen, C. & Li, Y.P. & Huang, G.H., 2016. "Interval-fuzzy municipal-scale energy model for identification of optimal strategies for energy management – A case study of Tianjin, China," Renewable Energy, Elsevier, vol. 86(C), pages 1161-1177.
    19. Hsu, Chaug-Ing & Wen, Yuh-Horng, 2000. "Application of Grey theory and multiobjective programming towards airline network design," European Journal of Operational Research, Elsevier, vol. 127(1), pages 44-68, November.
    20. Deng, Yan & Liu, Yicai & Zeng, Rong & Wang, Qianxu & Li, Zheng & Zhang, Yu & Liang, Heng, 2021. "A novel operation strategy based on black hole algorithm to optimize combined cooling, heating, and power-ground source heat pump system," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3910-:d:276890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.