IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2951-d179009.html
   My bibliography  Save this article

Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review

Author

Listed:
  • Simeng Li

    (Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046, USA)

  • Gang Chen

    (Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310-6046, USA)

  • Aavudai Anandhi

    (Biological Systems Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA)

Abstract

Background: Bioelectrochemical systems (BESs) are emerging energy-effective and environment-friendly technologies. Different applications of BESs are able to effectively minimize wastes and treat wastewater while simultaneously recovering electricity, biohydrogen and other value-added chemicals via specific redox reactions. Although there are many studies that have greatly advanced the performance of BESs over the last decade, research and reviews on agriculture-relevant applications of BESs are very limited. Considering the increasing demand for food, energy and water due to human population expansion, novel technologies are urgently needed to promote productivity and sustainability in agriculture. Methodology: This review study is based on an extensive literature search regarding agriculture-related BES studies mainly in the last decades (i.e., 2009–2018). The databases used in this review study include Scopus, Google Scholar and Web of Science. The current and future applications of bioelectrochemical technologies in agriculture have been discussed. Findings/Conclusions: BESs have the potential to recover considerable amounts of electric power and energy chemicals from agricultural wastes and wastewater. The recovered energy can be used to reduce the energy input into agricultural systems. Other resources and value-added chemicals such as biofuels, plant nutrients and irrigation water can also be produced in BESs. In addition, BESs may replace unsustainable batteries to power remote sensors or be designed as biosensors for agricultural monitoring. The possible applications to produce food without sunlight and remediate contaminated soils using BESs have also been discussed. At the same time, agricultural wastes can also be processed into construction materials or biochar electrodes/electrocatalysts for reducing the high costs of current BESs. Future studies should evaluate the long-term performance and stability of on-farm BES applications.

Suggested Citation

  • Simeng Li & Gang Chen & Aavudai Anandhi, 2018. "Applications of Emerging Bioelectrochemical Technologies in Agricultural Systems: A Current Review," Energies, MDPI, vol. 11(11), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2951-:d:179009
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2951/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2951/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    2. Andrea Pietrelli & Andrea Micangeli & Vincenzo Ferrara & Alessandro Raffi, 2014. "Wireless Sensor Network Powered by a Terrestrial Microbial Fuel Cell as a Sustainable Land Monitoring Energy System," Sustainability, MDPI, vol. 6(10), pages 1-13, October.
    3. Heller, Martin C. & Keoleian, Gregory A., 2003. "Assessing the sustainability of the US food system: a life cycle perspective," Agricultural Systems, Elsevier, vol. 76(3), pages 1007-1041, June.
    4. Kadier, Abudukeremu & Simayi, Yibadatihan & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Hamid, Aidil Abdul, 2014. "A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas," Renewable Energy, Elsevier, vol. 71(C), pages 466-472.
    5. Sadhukhan, Jhuma & Lloyd, Jon R. & Scott, Keith & Premier, Giuliano C. & Yu, Eileen H. & Curtis, Tom & Head, Ian M., 2016. "A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 116-132.
    6. Dinesh, G. Kumaravel & Chauhan, Rohit & Chakma, Sankar, 2018. "Influence and strategies for enhanced biohydrogen production from food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 807-822.
    7. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    8. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayin Ling & Yanbin Xu & Chuansheng Lu & Weikang Lai & Guangyan Xie & Li Zheng & Manjunatha P. Talawar & Qingping Du & Gangyi Li, 2019. "Enhancing Stability of Microalgae Biocathode by a Partially Submerged Carbon Cloth Electrode for Bioenergy Production from Wastewater," Energies, MDPI, vol. 12(17), pages 1-14, August.
    2. Miriam Cerrillo & Laura Burgos & August Bonmatí, 2021. "Biogas Upgrading and Ammonia Recovery from Livestock Manure Digestates in a Combined Electromethanogenic Biocathode—Hydrophobic Membrane System," Energies, MDPI, vol. 14(2), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jadhav, Dipak A. & Ghosh Ray, Sreemoyee & Ghangrekar, Makarand M., 2017. "Third generation in bio-electrochemical system research – A systematic review on mechanisms for recovery of valuable by-products from wastewater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1022-1031.
    2. Shuang Liu & Wenzhe Li & Guoxiang Zheng & Haiyan Yang & Longhai Li, 2020. "Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process," Energies, MDPI, vol. 13(15), pages 1-13, July.
    3. Jayabalan, Tamilmani & Manickam, Matheswaran & Naina Mohamed, Samsudeen, 2020. "NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 1144-1152.
    4. Yadav, Ashish & Verma, Nishith, 2019. "Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell," Renewable Energy, Elsevier, vol. 138(C), pages 628-638.
    5. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    6. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Penglong Wang & Yao Wei & Fanglei Zhong & Xiaoyu Song & Bao Wang & Qinhua Wang, 2022. "Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(5), pages 1-24, May.
    8. Karamanev, Dimitre & Pupkevich, Victor & Penev, Kalin & Glibin, Vassili & Gohil, Jay & Vajihinejad, Vahid, 2017. "Biological conversion of hydrogen to electricity for energy storage," Energy, Elsevier, vol. 129(C), pages 237-245.
    9. Zhang, Yanghuan & Li, Xufeng & Cai, Ying & Qi, Yan & Guo, Shihai & Zhao, Dongliang, 2019. "Improved hydrogen storage performances of Mg-Y-Ni-Cu alloys by melt spinning," Renewable Energy, Elsevier, vol. 138(C), pages 263-271.
    10. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    11. Theofilos Kamperidis & Asimina Tremouli & Antonis Peppas & Gerasimos Lyberatos, 2022. "A 2D Modelling Approach for Predicting the Response of a Two-Chamber Microbial Fuel Cell to Substrate Concentration and Electrolyte Conductivity Changes," Energies, MDPI, vol. 15(4), pages 1-15, February.
    12. Infante-Amate, Juan & Aguilera, Eduardo & de Molina, Manuel González, 2018. "Energy transition in Agri-food systems. Structural change, drivers and policy implications (Spain, 1960–2010)," Energy Policy, Elsevier, vol. 122(C), pages 570-579.
    13. Pouria Ataei & Hassan Sadighi & Mohammad Chizari & Enayat Abbasi, 2020. "In-depth content analysis of conservation agriculture training programs in Iran based on sustainability dimensions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7215-7237, December.
    14. Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
    15. Ragna Nilssen & Geoff Bick & Russell Abratt, 2019. "Comparing the relative importance of sustainability as a consumer purchase criterion of food and clothing in the retail sector," Journal of Brand Management, Palgrave Macmillan, vol. 26(1), pages 71-83, January.
    16. Courtney M. Regan & Jeffery D. Connor & Md Sayed Iftekhar, 2023. "An economic assessment of options for operating within plantation forestry water entitlements and tightening cap and trade policy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 303-322, April.
    17. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    18. Maria Elena Latino & Marta Menegoli & Martina De Giovanni, 2021. "Evaluating the Sustainability Dimensions in the Food Supply Chain: Literature Review and Research Routes," Sustainability, MDPI, vol. 13(21), pages 1-25, October.
    19. Leat, Philip M.K. & Lamprinopoulou-Kranis, Chrysa & Revoredo-Giha, Cesar & Kupiec-Teahan, Beata, 2011. "Agri-food supply chains and sustainability-related issues: evidence from across the Scottish agri-food economy," Working Papers 109424, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    20. Philippe A. Ker Rault & Phoebe Koundouri & Ebun Akinsete & Ralf Ludwig & Verena Huber-Garcia & Stella Tsani & Vicenc Acuna & Eleni Kalogianni & Joke Luttik & Kasper Kok & Nikolaos Skoulikidis & Jochen, 2019. "Down scaling of climate change scenarii to river basin level: A transdisciplinary methodology applied to Evrotas river basin, Greece," DEOS Working Papers 1913, Athens University of Economics and Business.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2951-:d:179009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.