IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p855-d102822.html
   My bibliography  Save this article

Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis

Author

Listed:
  • Beatrice Castellani

    (Engineering Department, University of Perugia, CIRIAF, Via G. Duranti 67, 06125 Perugia, Italy)

  • Alberto Maria Gambelli

    (Engineering Department, University of Perugia, CIRIAF, Via G. Duranti 67, 06125 Perugia, Italy)

  • Elena Morini

    (Engineering Department, University of Perugia, CIRIAF, Via G. Duranti 67, 06125 Perugia, Italy)

  • Benedetto Nastasi

    (Department of Architectural Engineering & Technology, Environmental & Computational Design Section, TU Delft University of Technology, Julianalaan 134, 2628 BL Delft, The Netherlands)

  • Andrea Presciutti

    (Engineering Department, University of Perugia, CIRIAF, Via G. Duranti 67, 06125 Perugia, Italy)

  • Mirko Filipponi

    (Engineering Department, University of Perugia, CIRIAF, Via G. Duranti 67, 06125 Perugia, Italy)

  • Andrea Nicolini

    (Engineering Department, University of Perugia, CIRIAF, Via G. Duranti 67, 06125 Perugia, Italy)

  • Federico Rossi

    (Engineering Department, University of Perugia, CIRIAF, Via G. Duranti 67, 06125 Perugia, Italy)

Abstract

The utilization of the captured CO 2 as a carbon source for the production of energy storage media offers a technological solution for overcoming crucial issues in current energy systems. Solar energy production generally does not match with energy demand because of its intermittent and non-programmable nature, entailing the adoption of storage technologies. Hydrogen constitutes a chemical storage for renewable electricity if it is produced by water electrolysis and is also the key reactant for CO 2 methanation (Sabatier reaction). The utilization of CO 2 as a feedstock for producing methane contributes to alleviate global climate changes and sequestration related problems. The produced methane is a carbon neutral gas that fits into existing infrastructure and allows issues related to the aforementioned intermittency and non-programmability of solar energy to be overcome. In this paper, an experimental apparatus, composed of an electrolyzer and a tubular fixed bed reactor, is built and used to produce methane via Sabatier reaction. The objective of the experimental campaign is the evaluation of the process performance and a comparison with other CO 2 valorization paths such as methanol production. The investigated pressure range was 2–20 bar, obtaining a methane volume fraction in outlet gaseous mixture of 64.75% at 8 bar and 97.24% at 20 bar, with conversion efficiencies of, respectively, 84.64% and 99.06%. The methanol and methane processes were compared on the basis of an energy parameter defined as the spent energy/stored energy. It is higher for the methanol process (0.45), with respect to the methane production process (0.41–0.43), which has a higher energy storage capability.

Suggested Citation

  • Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:855-:d:102822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lo Basso, Gianluigi & Nastasi, Benedetto & Astiaso Garcia, Davide & Cumo, Fabrizio, 2017. "How to handle the Hydrogen enriched Natural Gas blends in combustion efficiency measurement procedure of conventional and condensing boilers," Energy, Elsevier, vol. 123(C), pages 615-636.
    2. Momirlan, Magdalena & Muresan, L. & Sayigh, A.A.M. & Veziroglu, T.N., 1996. "The use of solar energy in hydrogen production," Renewable Energy, Elsevier, vol. 9(1), pages 1258-1261.
    3. Xianzheng Zhou & Chuangxin Guo & Yifei Wang & Wanqi Li, 2017. "Optimal Expansion Co-Planning of Reconfigurable Electricity and Natural Gas Distribution Systems Incorporating Energy Hubs," Energies, MDPI, vol. 10(1), pages 1-22, January.
    4. Ali Elkamel & Gholam Reza Zahedi & Chris Marton & Ali Lohi, 2009. "Optimal Fixed Bed Reactor Network Configuration for the Efficient Recycling of CO 2 into Methanol," Energies, MDPI, vol. 2(2), pages 1-10, April.
    5. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    6. Nastasi, Benedetto & Lo Basso, Gianluigi, 2016. "Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems," Energy, Elsevier, vol. 110(C), pages 5-22.
    7. Mohamed Magdeldin & Thomas Kohl & Cataldo De Blasio & Mika Järvinen & Song Won Park & Reinaldo Giudici, 2016. "The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production," Energies, MDPI, vol. 9(10), pages 1-27, October.
    8. Davide Astiaso Garcia & Federica Barbanera & Fabrizio Cumo & Umberto Di Matteo & Benedetto Nastasi, 2016. "Expert Opinion Analysis on Renewable Hydrogen Storage Systems Potential in Europe," Energies, MDPI, vol. 9(11), pages 1-22, November.
    9. Beatrice Castellani & Elena Morini & Mirko Filipponi & Andrea Nicolini & Massimo Palombo & Franco Cotana & Federico Rossi, 2014. "Comparative Analysis of Monitoring Devices for Particulate Content in Exhaust Gases," Sustainability, MDPI, vol. 6(7), pages 1-21, July.
    10. Beatrice Castellani & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2015. "Experimental Investigation on the Effect of Phase Change Materials on Compressed Air Expansion in CAES Plants," Sustainability, MDPI, vol. 7(8), pages 1-14, July.
    11. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    12. Abrar Inayat & Murni M. Ahmad & Suzana Yusup & Mohamed Ibrahim Abdul Mutalib, 2010. "Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach," Energies, MDPI, vol. 3(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    2. Chen, Huiyao & Chu, Fengming & Yang, Lijun & Ola, Oluwafunmilola & Du, Xiaoze & Yang, Yongping, 2018. "Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls," Applied Energy, Elsevier, vol. 230(C), pages 1403-1413.
    3. Gambelli, Alberto Maria & Rossi, Federico, 2019. "Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement," Energy, Elsevier, vol. 172(C), pages 423-434.
    4. Majidi Nezhad, M. & Groppi, D. & Marzialetti, P. & Fusilli, L. & Laneve, G. & Cumo, F. & Garcia, D. Astiaso, 2019. "Wind energy potential analysis using Sentinel-1 satellite: A review and a case study on Mediterranean islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 499-513.
    5. Uebbing, Jennifer & Rihko-Struckmann, Liisa K. & Sundmacher, Kai, 2019. "Exergetic assessment of CO2 methanation processes for the chemical storage of renewable energies," Applied Energy, Elsevier, vol. 233, pages 271-282.
    6. Moioli, Emanuele & Mutschler, Robin & Züttel, Andreas, 2019. "Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 497-506.
    7. Jixuan Wang & Wensheng Liu & Xin Meng & Xiaozhen Liu & Yanfeng Gao & Zuodong Yu & Yakai Bai & Xin Yang, 2020. "Study on the Coupling Effect of a Solar-Coal Unit Thermodynamic System with Carbon Capture," Energies, MDPI, vol. 13(18), pages 1-14, September.
    8. McDonagh, Shane & O'Shea, Richard & Wall, David M. & Deane, J.P. & Murphy, Jerry D., 2018. "Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel," Applied Energy, Elsevier, vol. 215(C), pages 444-456.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umberto Di Matteo & Benedetto Nastasi & Angelo Albo & Davide Astiaso Garcia, 2017. "Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale," Energies, MDPI, vol. 10(2), pages 1-13, February.
    2. Jaakko J. Jääskeläinen & Sakari Höysniemi & Sanna Syri & Veli-Pekka Tynkkynen, 2018. "Finland’s Dependence on Russian Energy—Mutually Beneficial Trade Relations or an Energy Security Threat?," Sustainability, MDPI, vol. 10(10), pages 1-25, September.
    3. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    4. de Santoli, Livio & Lo Basso, Gianluigi & Barati, Shahrokh & D’Ambra, Stefano & Fasolilli, Cristina, 2020. "Seasonal energy and environmental characterization of a micro gas turbine fueled with H2NG blends," Energy, Elsevier, vol. 193(C).
    5. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    6. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    7. Mirko Filipponi & Federico Rossi & Andrea Presciutti & Stefania De Ciantis & Beatrice Castellani & Ambro Carpinelli, 2016. "Thermal Analysis of an Industrial Furnace," Energies, MDPI, vol. 9(10), pages 1-13, October.
    8. Martin Robinius & Alexander Otto & Konstantinos Syranidis & David S. Ryberg & Philipp Heuser & Lara Welder & Thomas Grube & Peter Markewitz & Vanessa Tietze & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 2: Modelling a Sector Coupling Scenario for Germany," Energies, MDPI, vol. 10(7), pages 1-23, July.
    9. Vincenzo Palma & Concetta Ruocco & Eugenio Meloni & Antonio Ricca, 2017. "Influence of Catalytic Formulation and Operative Conditions on Coke Deposition over CeO 2 -SiO 2 Based Catalysts for Ethanol Reforming," Energies, MDPI, vol. 10(7), pages 1-13, July.
    10. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    11. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    12. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    13. Varghese, Sushant & Sioshansi, Ramteen, 2020. "The price is right? How pricing and incentive mechanisms in California incentivize building distributed hybrid solar and energy-storage systems," Energy Policy, Elsevier, vol. 138(C).
    14. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    15. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    16. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    17. Šimun Lončarević & Petar Ilinčić & Goran Šagi & Zoran Lulić, 2023. "Development of a Spatial Tier 2 Emission Inventory for Agricultural Tractors by Combining Two Large-Scale Datasets," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    18. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    19. Sadi, M. & Arabkoohsar, A., 2019. "Exergoeconomic analysis of a combined solar-waste driven power plant," Renewable Energy, Elsevier, vol. 141(C), pages 883-893.
    20. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:855-:d:102822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.