IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p2455-2470.html
   My bibliography  Save this article

Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system

Author

Listed:
  • Colmenar-Santos, Antonio
  • Molina-Ibáñez, Enrique-Luis
  • Rosales-Asensio, Enrique
  • Blanes-Peiró, Jorge-Juan

Abstract

With the encouragement from renewable energies, elements of the electrical system are magnified which make possible a suitable connection to the electrical network. Among others, energy storage systems (ESSs) are emphasized because of their impact. This article discusses two essential aspects to take into account for an ESS, that is the regulatory framework and the economic aspect. In particular, it focuses on superconducting magnetic energy storage (SMES) in the Spanish electrical system. An analysis is performed on the legislation and regulations that apply to energy storage systems, which may affect in a direct or indirect manner its inclusion. This is accompanied by an analysis of the legislation in different countries to assess the situation in Spain in this regard, by comparison. Another point to take into consideration, which is crucial for the correct development and inclusion of this type of elements, is the economic viability- showing the costs of manufacturing and maintenance of these systems. Although it is necessary to keep investigating to lower the costs, economic benefits are appreciated, among other things, owing to the increase of the reliability of the electrical network. This increase of the reliability is resultant from a decrease of the cuts of service and the improvement of the quality of the energy.

Suggested Citation

  • Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2455-2470
    DOI: 10.1016/j.rser.2017.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117312625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saboori, Hedayat & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2015. "Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems," Energy, Elsevier, vol. 93(P2), pages 2299-2312.
    2. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    3. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    4. Mahto, Tarkeshwar & Mukherjee, V., 2015. "Energy storage systems for mitigating the variability of isolated hybrid power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1564-1577.
    5. Farhadi Kangarlu, Mohammad & Alizadeh Pahlavani, Mohammad Reza, 2014. "Cascaded multilevel converter based superconducting magnetic energy storage system for frequency control," Energy, Elsevier, vol. 70(C), pages 504-513.
    6. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    7. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    8. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    9. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2015. "Smart households: Dispatch strategies and economic analysis of distributed energy storage for residential peak shaving," Applied Energy, Elsevier, vol. 147(C), pages 246-257.
    10. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    11. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    12. Zhu, Jiahui & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Lai, Xiaokang & Yuan, Weijia, 2013. "Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid," Energy, Elsevier, vol. 51(C), pages 184-192.
    13. Theo, Wai Lip & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Abdul-Manan, Zainuddin, 2016. "An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park," Energy, Elsevier, vol. 116(P2), pages 1423-1441.
    14. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    15. Mariam, Lubna & Basu, Malabika & Conlon, Michael F., 2016. "Microgrid: Architecture, policy and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 477-489.
    16. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    17. Li, Yun & Li, Yanbin & Ji, Pengfei & Yang, Jing, 2015. "Development of energy storage industry in China: A technical and economic point of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 805-812.
    18. Planas, Estefanía & Andreu, Jon & Gárate, José Ignacio & Martínez de Alegría, Iñigo & Ibarra, Edorta, 2015. "AC and DC technology in microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 726-749.
    19. Zhu, Jiahui & Yuan, Weijia & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Chen, Panpan & Yang, Yanfang & Zhang, Min & Huang, Xiaohua & Li, Zhenming, 2015. "Experimental demonstration and application planning of high temperature superconducting energy storage system for renewable power grids," Applied Energy, Elsevier, vol. 137(C), pages 692-698.
    20. Selvaraju, Ramesh Kumar & Somaskandan, Ganapathy, 2016. "Impact of energy storage units on load frequency control of deregulated power systems," Energy, Elsevier, vol. 97(C), pages 214-228.
    21. Chatzivasileiadi, Aikaterini & Ampatzi, Eleni & Knight, Ian, 2013. "Characteristics of electrical energy storage technologies and their applications in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 814-830.
    22. Koohi-Kamali, Sam & Tyagi, V.V. & Rahim, N.A. & Panwar, N.L. & Mokhlis, H., 2013. "Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 135-165.
    23. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Majid, Md Shah & Rahman, Hasimah Abdul, 2013. "Review of storage schemes for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 237-247.
    24. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    25. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    26. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    27. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    28. Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
    29. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    2. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & López-Rey, África, 2018. "Technical approach for the inclusion of superconducting magnetic energy storage in a smart city," Energy, Elsevier, vol. 158(C), pages 1080-1091.
    3. Bizon, Nicu, 2018. "Effective mitigation of the load pulses by controlling the battery/SMES hybrid energy storage system," Applied Energy, Elsevier, vol. 229(C), pages 459-473.
    4. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Colmenar-Santos, Antonio & Palomo-Torrejón, Elisabet & Mur-Pérez, Francisco & Rosales-Asensio, Enrique, 2020. "Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & López-Rey, África, 2018. "Technical approach for the inclusion of superconducting magnetic energy storage in a smart city," Energy, Elsevier, vol. 158(C), pages 1080-1091.
    2. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    3. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    4. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    5. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    6. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework," Energy, Elsevier, vol. 113(C), pages 762-775.
    7. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    8. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    9. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    10. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    11. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    12. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    13. Katsanevakis, Markos & Stewart, Rodney A. & Lu, Junwei, 2017. "Aggregated applications and benefits of energy storage systems with application-specific control methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 719-741.
    14. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    16. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    17. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.
    18. Paulo Rotella Junior & Luiz Célio Souza Rocha & Sandra Naomi Morioka & Ivan Bolis & Gianfranco Chicco & Andrea Mazza & Karel Janda, 2021. "Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives," Energies, MDPI, vol. 14(9), pages 1-29, April.
    19. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    20. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2455-2470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.