IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v101y2021ics0140988321002899.html
   My bibliography  Save this article

Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization

Author

Listed:
  • Antweiler, Werner

Abstract

This paper develops microeconomic models of electricity storage. The full economic potential of price arbitrage with nodal storage hinges not only on battery characteristics (energy-to-power ratio) but crucially also on the quality of price forecasting. Economic theory can also quantify the intrinsic profitability limitations as increased storage deployment smoothes price variations. The profitability of supply-side storage for intermittent power producers depends on the exposure to curtailment risk and thus the empirical distribution of negative price episodes. Demand-side storage can be economical when improved utilization of existing power lines avoids expanding them, and this trade-off potential is captured in a theoretical model. Economic magnitudes are explored with zonal prices from Ontario, which has some of the most volatile electricity prices in North America. Wider use of locational marginal prices in wholesale electricity markets will incentivize efficient deployment of electricity storage and also induce intermittent power producers to internalize curtailment risk appropriately.

Suggested Citation

  • Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
  • Handle: RePEc:eee:eneeco:v:101:y:2021:i:c:s0140988321002899
    DOI: 10.1016/j.eneco.2021.105390
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988321002899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2021.105390?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joachim Geske and Richard Green, 2020. "Optimal Storage, Investment and Management under Uncertainty: It is Costly to Avoid Outages!," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-28.
    2. He, Xian & Delarue, Erik & D'haeseleer, William & Glachant, Jean-Michel, 2011. "A novel business model for aggregating the values of electricity storage," Energy Policy, Elsevier, vol. 39(3), pages 1575-1585, March.
    3. Krishnan, Venkat & Das, Trishna, 2015. "Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures," Energy, Elsevier, vol. 81(C), pages 175-188.
    4. Shafiee, Soroush & Zamani-Dehkordi, Payam & Zareipour, Hamidreza & Knight, Andrew M., 2016. "Economic assessment of a price-maker energy storage facility in the Alberta electricity market," Energy, Elsevier, vol. 111(C), pages 537-547.
    5. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    6. van der Linden, Septimus, 2006. "Bulk energy storage potential in the USA, current developments and future prospects," Energy, Elsevier, vol. 31(15), pages 3446-3457.
    7. Greenwood, D.M. & Lim, K.Y. & Patsios, C. & Lyons, P.F. & Lim, Y.S. & Taylor, P.C., 2017. "Frequency response services designed for energy storage," Applied Energy, Elsevier, vol. 203(C), pages 115-127.
    8. Motalleb, Mahdi & Reihani, Ehsan & Ghorbani, Reza, 2016. "Optimal placement and sizing of the storage supporting transmission and distribution networks," Renewable Energy, Elsevier, vol. 94(C), pages 651-659.
    9. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    10. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    11. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    12. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2016. "Hourly demand response and battery energy storage for imbalance reduction of smart distribution company embedded with electric vehicles and wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 124-136.
    13. Reihani, Ehsan & Motalleb, Mahdi & Ghorbani, Reza & Saad Saoud, Lyes, 2016. "Load peak shaving and power smoothing of a distribution grid with high renewable energy penetration," Renewable Energy, Elsevier, vol. 86(C), pages 1372-1379.
    14. Wade, N.S. & Taylor, P.C. & Lang, P.D. & Jones, P.R., 2010. "Evaluating the benefits of an electrical energy storage system in a future smart grid," Energy Policy, Elsevier, vol. 38(11), pages 7180-7188, November.
    15. Nyamdash, Batsaikhan & Denny, Eleanor & O'Malley, Mark, 2010. "The viability of balancing wind generation with large scale energy storage," Energy Policy, Elsevier, vol. 38(11), pages 7200-7208, November.
    16. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    17. Locatelli, Giorgio & Palerma, Emanuele & Mancini, Mauro, 2015. "Assessing the economics of large Energy Storage Plants with an optimisation methodology," Energy, Elsevier, vol. 83(C), pages 15-28.
    18. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2017. "Optimal battery storage operation for PV systems with tariff incentives," Applied Energy, Elsevier, vol. 203(C), pages 422-441.
    19. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    20. Cho, Joohyun & Kleit, Andrew N., 2015. "Energy storage systems in energy and ancillary markets: A backwards induction approach," Applied Energy, Elsevier, vol. 147(C), pages 176-183.
    21. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    22. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    23. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    24. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    25. Antweiler, Werner, 2017. "A two-part feed-in-tariff for intermittent electricity generation," Energy Economics, Elsevier, vol. 65(C), pages 458-470.
    26. McPherson, Madeleine & Karney, Bryan, 2017. "A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model," Energy, Elsevier, vol. 138(C), pages 185-196.
    27. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    28. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    29. Yu, Nanpeng & Foggo, Brandon, 2017. "Stochastic valuation of energy storage in wholesale power markets," Energy Economics, Elsevier, vol. 64(C), pages 177-185.
    30. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    31. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Majid, Md Shah & Rahman, Hasimah Abdul, 2013. "Review of storage schemes for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 237-247.
    32. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "Steering the adoption of battery storage through electricity tariff design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 125-139.
    33. Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
    34. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sai Bravo & Carole Haritchabalet, 2023. "Prosumers: Grid Storage vs Small Fuel-Cell," Working Papers hal-04119625, HAL.
    2. Antweiler, Werner & Muesgens, Felix, 2024. "The new merit order: The viability of energy-only electricity markets with only intermittent renewable energy sources and grid-scale storage," Ruhr Economic Papers 1064, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    3. Gorman, Will & Montañés, Cristina Crespo & Mills, Andrew & Kim, James Hyungkwan & Millstein, Dev & Wiser, Ryan, 2022. "Are coupled renewable-battery power plants more valuable than independently sited installations?," Energy Economics, Elsevier, vol. 107(C).
    4. Michas, Serafeim & Flamos, Alexandros, 2023. "Are there preferable capacity combinations of renewables and storage? Exploratory quantifications along various technology deployment pathways," Energy Policy, Elsevier, vol. 174(C).
    5. Mercier, Thomas & Olivier, Mathieu & De Jaeger, Emmanuel, 2023. "The value of electricity storage arbitrage on day-ahead markets across Europe," Energy Economics, Elsevier, vol. 123(C).
    6. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
    7. Sai Bravo & Carole Haritchabalet, 2023. "Prosumers: Grid Storage vs Small Fuel-Cell," Working papers of Transitions Energétiques et Environnementales (TREE) hal-04119625, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    2. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    3. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    4. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    5. Chazarra, Manuel & Pérez-Díaz, Juan I. & García-González, Javier & Praus, Roland, 2018. "Economic viability of pumped-storage power plants participating in the secondary regulation service," Applied Energy, Elsevier, vol. 216(C), pages 224-233.
    6. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    7. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    8. Mercier, Thomas & Olivier, Mathieu & De Jaeger, Emmanuel, 2023. "The value of electricity storage arbitrage on day-ahead markets across Europe," Energy Economics, Elsevier, vol. 123(C).
    9. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    10. Jeon, Wooyoung & Mo, Jung Youn, 2018. "The true economic value of supply-side energy storage in the smart grid environment – The case of Korea," Energy Policy, Elsevier, vol. 121(C), pages 101-111.
    11. Mauricio B. C. Salles & Junling Huang & Michael J. Aziz & William W. Hogan, 2017. "Potential Arbitrage Revenue of Energy Storage Systems in PJM," Energies, MDPI, vol. 10(8), pages 1-19, July.
    12. Chen, Yang & Odukomaiya, Adewale & Kassaee, Saiid & O’Connor, Patrick & Momen, Ayyoub M. & Liu, Xiaobing & Smith, Brennan T., 2019. "Preliminary analysis of market potential for a hydropneumatic ground-level integrated diverse energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 1237-1247.
    13. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    14. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    15. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    16. Ahmed Mohamed & Rémy Rigo-Mariani & Vincent Debusschere & Lionel Pin, 2023. "Stacked Revenues for Energy Storage Participating in Energy and Reserve Markets with an Optimal Frequency Regulation Modeling," Post-Print hal-04182119, HAL.
    17. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Arcos-Vargas, Ángel & Canca, David & Núñez, Fernando, 2020. "Impact of battery technological progress on electricity arbitrage: An application to the Iberian market," Applied Energy, Elsevier, vol. 260(C).
    19. Núñez, Fernando & Canca, David & Arcos-Vargas, Ángel, 2022. "An assessment of European electricity arbitrage using storage systems," Energy, Elsevier, vol. 242(C).
    20. Ruppert, Leopold & Schürhuber, Robert & List, Bernhard & Lechner, Alois & Bauer, Christian, 2017. "An analysis of different pumped storage schemes from a technological and economic perspective," Energy, Elsevier, vol. 141(C), pages 368-379.

    More about this item

    Keywords

    Electricity economics; Electricity storage; Optimal control;
    All these keywords.

    JEL classification:

    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:101:y:2021:i:c:s0140988321002899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.