IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v107y2022ics0140988322000226.html
   My bibliography  Save this article

Are coupled renewable-battery power plants more valuable than independently sited installations?

Author

Listed:
  • Gorman, Will
  • Montañés, Cristina Crespo
  • Mills, Andrew
  • Kim, James Hyungkwan
  • Millstein, Dev
  • Wiser, Ryan

Abstract

Coupling battery storage to renewable plants is increasingly common in the United States, where a third of proposed solar capacity now includes battery storage. Adding batteries to renewable plants increases the average value of energy sold, can reduce energy losses to curtailment, and is incentivized through the investment tax credit. Additionally, coupling renewables with batteries saves on permitting, planning, and construction costs compared to developing the projects separately. However, collocation limits the potential locations at which the batteries might be sited. This limitation leads to an opportunity cost, or “coupling penalty,” which is the missed value that could be realized by independently siting the batteries in an optimal location away from the wind or solar resources. In this paper, we assess the opportunity costs of coupling batteries with wind and solar plants. Our analysis is based on United States wholesale power markets, and we explore how the coupling penalty varies over time (2012–2019) and across location (across the seven major wholesale markets). We find the coupling penalty ranges from $2.3/MWh to $13.7/MWh, depending on battery integration assumptions. This penalty is the same order of magnitude as cost savings estimates for coupled project development and construction. This rough equivalence in opportunity cost and cost savings suggests that the net value of coupling renewables and batteries is highly sensitive to site-level market conditions and configuration decisions. The current structure of the investment tax credit, which only reduces storage costs when charged by a renewable generator, will often ‘tip the balance’ towards coupling.

Suggested Citation

  • Gorman, Will & Montañés, Cristina Crespo & Mills, Andrew & Kim, James Hyungkwan & Millstein, Dev & Wiser, Ryan, 2022. "Are coupled renewable-battery power plants more valuable than independently sited installations?," Energy Economics, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000226
    DOI: 10.1016/j.eneco.2022.105832
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322000226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.105832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander E. MacDonald & Christopher T. M. Clack & Anneliese Alexander & Adam Dunbar & James Wilczak & Yuanfu Xie, 2016. "Future cost-competitive electricity systems and their impact on US CO2 emissions," Nature Climate Change, Nature, vol. 6(5), pages 526-531, May.
    2. Joachim Geske and Richard Green, 2020. "Optimal Storage, Investment and Management under Uncertainty: It is Costly to Avoid Outages!," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-28.
    3. Mai, Trieu & Mulcahy, David & Hand, M. Maureen & Baldwin, Samuel F., 2014. "Envisioning a renewable electricity future for the United States," Energy, Elsevier, vol. 65(C), pages 374-386.
    4. Murphy, C.A. & Schleifer, A. & Eurek, K., 2021. "A taxonomy of systems that combine utility-scale renewable energy and energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Denholm, Paul & Mai, Trieu, 2019. "Timescales of energy storage needed for reducing renewable energy curtailment," Renewable Energy, Elsevier, vol. 130(C), pages 388-399.
    6. Mills, Andrew D. & Rodriguez, Pía, 2020. "A simple and fast algorithm for estimating the capacity credit of solar and storage," Energy, Elsevier, vol. 210(C).
    7. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    8. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    9. William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
    10. Eicke, Anselm & Khanna, Tarun & Hirth, Lion, 2020. "Locational investment signals - How to steer the siting of new generation capacity in power systems?," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 41(6), pages 281-304.
    11. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    12. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    13. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    14. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    15. Bradbury, Kyle & Pratson, Lincoln & Patiño-Echeverri, Dalia, 2014. "Economic viability of energy storage systems based on price arbitrage potential in real-time U.S. electricity markets," Applied Energy, Elsevier, vol. 114(C), pages 512-519.
    16. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    17. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    18. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    19. Guannan He & Qixin Chen & Panayiotis Moutis & Soummya Kar & Jay F. Whitacre, 2018. "An intertemporal decision framework for electrochemical energy storage management," Nature Energy, Nature, vol. 3(5), pages 404-412, May.
    20. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    21. Piotr F. Borowski, 2020. "Zonal and Nodal Models of Energy Market in European Union," Energies, MDPI, vol. 13(16), pages 1-21, August.
    22. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    23. DiOrio, Nicholas & Denholm, Paul & Hobbs, William B., 2020. "A model for evaluating the configuration and dispatch of PV plus battery power plants," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gorman, Will & Barbose, Galen & Pablo Carvallo, Juan & Baik, Sunhee & Miller, Chandler & White, Philip & Praprost, Marlena, 2023. "County-level assessment of behind-the-meter solar and storage to mitigate long duration power interruptions for residential customers," Applied Energy, Elsevier, vol. 342(C).
    2. Stringer, Thomas & Joanis, Marcelin, 2023. "Decarbonizing Canada's remote microgrids," Energy, Elsevier, vol. 264(C).
    3. Bolinger, Mark & Millstein, Dev & Gorman, Will & Dobson, Patrick & Jeong, Seongeun, 2023. "Mind the gap: Comparing the net value of geothermal, wind, solar, and solar+storage in the Western United States," Renewable Energy, Elsevier, vol. 205(C), pages 999-1009.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    2. Paul Simshauser & Farhad Billimoria & Craig Rogers, 2021. "Optimising VRE plant capacity in Renewable Energy Zones," Working Papers EPRG2121, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    4. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    5. Flottmann, Jonty H. & Akimov, Alexandr & Simshauser, Paul, 2022. "Firming merchant renewable generators in Australia’s National Electricity Market," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 262-276.
    6. O'Shaughnessy, Eric & Cutler, Dylan & Ardani, Kristen & Margolis, Robert, 2018. "Solar plus: A review of the end-user economics of solar PV integration with storage and load control in residential buildings," Applied Energy, Elsevier, vol. 228(C), pages 2165-2175.
    7. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    8. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    9. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    10. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    11. James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
    12. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    13. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    14. Simshauser, Paul, 2021. "Renewable Energy Zones in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 101(C).
    15. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    16. Glenk, Gunther & Reichelstein, Stefan, 2021. "Intermittent versus dispatchable power sources: An integrated competitive assessment," ZEW Discussion Papers 21-065, ZEW - Leibniz Centre for European Economic Research.
    17. Simshauser, Paul & Billimoria, Farhad & Rogers, Craig, 2022. "Optimising VRE capacity in Renewable Energy Zones," Energy Economics, Elsevier, vol. 113(C).
    18. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    19. Simshauser, Paul, 2018. "On intermittent renewable generation & the stability of Australia's National Electricity Market," Energy Economics, Elsevier, vol. 72(C), pages 1-19.
    20. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:107:y:2022:i:c:s0140988322000226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.