IDEAS home Printed from https://ideas.repec.org/a/gam/jecnmx/v6y2018i4p47-d189422.html
   My bibliography  Save this article

Interval Estimation of Value-at-Risk Based on Nonparametric Models

Author

Listed:
  • Hussein Khraibani

    (Department of Applied Mathematics, Faculty of Sciences, Lebanese University, Beirut 2038 1003, Lebanon)

  • Bilal Nehme

    (Department of Economics, Faculty of Economic Sciences & Business Administration, Lebanese University, Beirut 2038 1003, Lebanon)

  • Olivier Strauss

    (Department of Robotics, LIRMM University of Montpellier II, 61 rue Ada, 34392 Montpellier CEDEX 5, France)

Abstract

Value-at-Risk (VaR) has become the most important benchmark for measuring risk in portfolios of different types of financial instruments. However, as reported by many authors, estimating VaR is subject to a high level of uncertainty. One of the sources of uncertainty stems from the dependence of the VaR estimation on the choice of the computation method. As we show in our experiment, the lower the number of samples, the higher this dependence. In this paper, we propose a new nonparametric approach called maxitive kernel estimation of the VaR. This estimation is based on a coherent extension of the kernel-based estimation of the cumulative distribution function to convex sets of kernel. We thus obtain a convex set of VaR estimates gathering all the conventional estimates based on a kernel belonging to the above considered convex set. We illustrate this method in an empirical application to daily stock returns. We compare the approach we propose to other parametric and nonparametric approaches. In our experiment, we show that the interval-valued estimate of the VaR we obtain is likely to lead to more careful decision, i.e., decisions that cannot be biased by an arbitrary choice of the computation method. In fact, the imprecision of the obtained interval-valued estimate is likely to be representative of the uncertainty in VaR estimate.

Suggested Citation

  • Hussein Khraibani & Bilal Nehme & Olivier Strauss, 2018. "Interval Estimation of Value-at-Risk Based on Nonparametric Models," Econometrics, MDPI, vol. 6(4), pages 1-30, December.
  • Handle: RePEc:gam:jecnmx:v:6:y:2018:i:4:p:47-:d:189422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2225-1146/6/4/47/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2225-1146/6/4/47/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dubois, Didier, 2006. "Possibility theory and statistical reasoning," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 47-69, November.
    2. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    3. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    4. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    5. Jones, M. C., 1990. "The performance of kernel density functions in kernel distribution function estimation," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 129-132, February.
    6. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    7. Arthur Charpentier & Abder Oulidi, 2010. "Beta kernel quantile estimators of heavy-tailed loss distributions," Post-Print halshs-00425566, HAL.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    9. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    10. Manuela Braione & Nicolas K. Scholtes, 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," Econometrics, MDPI, vol. 4(1), pages 1-27, January.
    11. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 227-255.
    12. repec:adr:anecst:y:2000:i:60:p:10 is not listed on IDEAS
    13. Jon Danielsson & Casper G. De Vries, 2000. "Value-at-Risk and Extreme Returns," Annals of Economics and Statistics, GENES, issue 60, pages 239-270.
    14. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    15. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    16. BRAIONE, Manuela & SCHOLTES, Nicolas K., 2016. "Forecasting Value-at-Risk under Different Distributional Assumptions," LIDAM Reprints CORE 2733, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nick James & Max Menzies & Jennifer Chan, 2023. "Semi-Metric Portfolio Optimization: A New Algorithm Reducing Simultaneous Asset Shocks," Econometrics, MDPI, vol. 11(1), pages 1-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    2. Degiannakis, Stavros & Potamia, Artemis, 2017. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
    3. d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
    4. Nieto, María Rosa & Ruiz Ortega, Esther, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Laura Garcia-Jorcano & Alfonso Novales, 2020. "A dominance approach for comparing the performance of VaR forecasting models," Computational Statistics, Springer, vol. 35(3), pages 1411-1448, September.
    6. Sobreira, Nuno & Louro, Rui, 2020. "Evaluation of volatility models for forecasting Value-at-Risk and Expected Shortfall in the Portuguese stock market," Finance Research Letters, Elsevier, vol. 32(C).
    7. Emrah ALTUN & Morad ALIZADEH & Gamze OZEL & Hüseyin TATLIDIL & Najmieh MAKSAYI, 2017. "Forecasting Value-At-Risk With Two-Step Method: Garch-Exponentiated Odd Log-Logistic Normal Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 97-115, December.
    8. Luis Fernando Melo Velandia & Oscar Reinaldo Becerra Camargo, 2005. "Medidas De Riesgo, Caracteristicas Y Técnicas De Medición: Una Aplicación Del Var Y El Es A La Tasa Interbancaria De Colombia," Borradores de Economia 3198, Banco de la Republica.
    9. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    10. Chebbi, Ali & Hedhli, Amel, 2022. "Revisiting the accuracy of standard VaR methods for risk assessment: Using the Copula–EVT multidimensional approach for stock markets in the MENA region," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 430-445.
    11. Luis Fernando Melo Velandia & Oscar reinaldo Becerra Camargo, 2005. "Medidas de Riesgo, Características y Técnicas de Medición: Una Aplicación del VAR y el ES a la Tasa Interbancaria de Colombia," Borradores de Economia 343, Banco de la Republica de Colombia.
    12. Ian Laker & Chun-Kai Huang & Allan Ernest Clark, 2017. "Dependent bootstrapping for value-at-risk and expected shortfall," Risk Management, Palgrave Macmillan, vol. 19(4), pages 301-322, November.
    13. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    14. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    15. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    16. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    17. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    18. Lazar, Emese & Zhang, Ning, 2019. "Model risk of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
    19. Alexander, Carol & Sheedy, Elizabeth, 2008. "Developing a stress testing framework based on market risk models," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2220-2236, October.
    20. Fan, Ying & Zhang, Yue-Jun & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Estimating 'Value at Risk' of crude oil price and its spillover effect using the GED-GARCH approach," Energy Economics, Elsevier, vol. 30(6), pages 3156-3171, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jecnmx:v:6:y:2018:i:4:p:47-:d:189422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.