IDEAS home Printed from https://ideas.repec.org/a/gam/jcltec/v3y2021i2p23-423d547616.html
   My bibliography  Save this article

Developing a Hybrid Optimization Algorithm for Optimal Allocation of Renewable DGs in Distribution Network

Author

Listed:
  • Ayman Awad

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Hussein Abdel-Mawgoud

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Salah Kamel

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Abdalla A. Ibrahim

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt)

  • Francisco Jurado

    (Department of Electrical Engineering, University of Jaen, 23700 EPS Linares, Spain)

Abstract

Distributed generation (DG) is becoming a prominent key spot for research in recent years because it can be utilized in emergency/reserve plans for power systems and power quality improvement issues, besides its drastic impact on the environment as a greenhouse gas (GHG) reducer. For maximizing the benefits from such technology, it is crucial to identify the best size and location for DG that achieves the required goal of installing it. This paper presents an investigation of the optimized allocation of DG in different modes using a proposed hybrid technique, the tunicate swarm algorithm/sine-cosine algorithm (TSA/SCA). This investigation is performed on an IEEE-69 Radial Distribution System (RDS), where the impact of such allocation on the system is evaluated by NEPLAN software.

Suggested Citation

  • Ayman Awad & Hussein Abdel-Mawgoud & Salah Kamel & Abdalla A. Ibrahim & Francisco Jurado, 2021. "Developing a Hybrid Optimization Algorithm for Optimal Allocation of Renewable DGs in Distribution Network," Clean Technol., MDPI, vol. 3(2), pages 1-15, May.
  • Handle: RePEc:gam:jcltec:v:3:y:2021:i:2:p:23-423:d:547616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8797/3/2/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8797/3/2/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huisman, Kuno J. M. & Kort, Peter M., 2004. "Strategic technology adoption taking into account future technological improvements: A real options approach," European Journal of Operational Research, Elsevier, vol. 159(3), pages 705-728, December.
    2. Di Corato, Luca & Moretto, Michele, 2011. "Investing in biogas: Timing, technological choice and the value of flexibility from input mix," Energy Economics, Elsevier, vol. 33(6), pages 1186-1193.
    3. Luigi Ranieri & Giorgio Mossa & Roberta Pellegrino & Salvatore Digiesi, 2018. "Energy Recovery from the Organic Fraction of Municipal Solid Waste: A Real Options-Based Facility Assessment," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    4. Paska, Józef & Biczel, Piotr & Kłos, Mariusz, 2009. "Hybrid power systems – An effective way of utilising primary energy sources," Renewable Energy, Elsevier, vol. 34(11), pages 2414-2421.
    5. Rizzi, Francesco & van Eck, Nees Jan & Frey, Marco, 2014. "The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management," Renewable Energy, Elsevier, vol. 62(C), pages 657-671.
    6. Engelen, Peter-Jan & Kool, Clemens & Li, Ye, 2016. "A barrier options approach to modeling project failure: The case of hydrogen fuel infrastructure," Resource and Energy Economics, Elsevier, vol. 43(C), pages 33-56.
    7. Ali, E.S. & Abd Elazim, S.M. & Abdelaziz, A.Y., 2016. "Ant Lion Optimization Algorithm for Renewable Distributed Generations," Energy, Elsevier, vol. 116(P1), pages 445-458.
    8. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    9. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fathy, Ahmed, 2022. "A novel artificial hummingbird algorithm for integrating renewable based biomass distributed generators in radial distribution systems," Applied Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye Li & Clemens Kool & Peter-Jan Engelen, 2020. "Analyzing the Business Case for Hydrogen-Fuel Infrastructure Investments with Endogenous Demand in The Netherlands: A Real Options Approach," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    2. Balibrea-Iniesta, José & Rodríguez-Monroy, Carlos & Núñez-Guerrero, Yilsy María, 2021. "Economic analysis of the German regulation for electrical generation projects from biogas applying the theory of real options," Energy, Elsevier, vol. 231(C).
    3. Arve, Malin & Zwart, Gijsbert, 2023. "Optimal procurement and investment in new technologies under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    4. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    5. Giovanni Matteo & Pierfrancesco Nardi & Stefano Grego & Caterina Guidi, 2018. "Bibliometric analysis of Climate Change Vulnerability Assessment research," Environment Systems and Decisions, Springer, vol. 38(4), pages 508-516, December.
    6. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2013. "Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 453-463.
    7. Billette de Villemeur, Etienne & Ruble, Richard & Versaevel, Bruno, 2014. "Innovation and imitation incentives in dynamic duopoly," MPRA Paper 59453, University Library of Munich, Germany.
    8. Hagspiel, V. & Huisman, Kuno & Kort, Peter M. & Nunes, Claudia & Pimentel, Rita, 2018. "Product Innovation of an Incumbent Firm : A Dynamic Analysis," Discussion Paper 2018-048, Tilburg University, Center for Economic Research.
    9. Formaneck, Steven D. & Cozzarin, Brian P., 2013. "Technology adoption and training practices as a constrained shortest path problem," Omega, Elsevier, vol. 41(2), pages 459-472.
    10. Liangchen Li & Michael Ludkovski, 2018. "Stochastic Switching Games," Papers 1807.03893, arXiv.org.
    11. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    12. Alcino Azevedo & Dean Paxson, 2018. "Rivalry and uncertainty in complementary investments with dynamic market sharing," Annals of Operations Research, Springer, vol. 271(2), pages 319-355, December.
    13. Di Corato, Luca & Moretto, Michele, 2011. "Investing in biogas: Timing, technological choice and the value of flexibility from input mix," Energy Economics, Elsevier, vol. 33(6), pages 1186-1193.
    14. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    15. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    16. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    17. Guoliang Zhang & Suhua Lou & Yaowu Wu & Yang Wu & Xiangfeng Wen, 2020. "A New Commerce Operation Model for Integrated Energy System Containing the Utilization of Bio-Natural Gas," Energies, MDPI, vol. 13(24), pages 1-13, December.
    18. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    19. Yu-Cheol Jeong & Eul-Bum Lee & Douglas Alleman, 2019. "Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation," Energies, MDPI, vol. 12(4), pages 1-16, February.
    20. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jcltec:v:3:y:2021:i:2:p:23-423:d:547616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.