IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v6y2015i2p258-270d59473.html
   My bibliography  Save this article

Wind Energy Based Electric Vehicle Charging Stations Sitting. A GIS/Wind Resource Assessment Approach

Author

Listed:
  • George Xydis

    (Soft Energy Applications & Environmental Protection Lab, Piraeus University of Applied Sciences, P.O. Box, 41046, Athens 12201, Greece
    These authors contributed equally to this work.)

  • Evanthia Nanaki

    (Centre for Research and Technology Hellas, Institute for Research and Technology of Thessaly, Technology Park of Thessaly, 1st Industrial Area, 38500 Volos, Greece
    Department of Mechanical Engineering, University of Western Macedonia, Kozani 50100, Greece
    These authors contributed equally to this work.)

Abstract

The transportation sector is severely correlated with major problems in environment, citizens’ health, climate and economy. Issues such as traffic, fuel cost and parking space have make life more difficult, especially in the dense urban environment. Thus, there is a great need for the development of the electric vehicle (EV) sector. The number of cars in cities has increased so much that the current transportation system (roads, parking places, traffic lights, etc. ) cannot accommodate them properly. The increasing number of vehicles does not affect only humans but also the environment, through air and noise pollution. According to EPA, the 39.2% of total gas emissions in 2007 was caused by transportation activities. Studies have shown that the pollutants are not only gathered in the major roads and/or highways but can travel depending on the meteorological conditions leading to generic pollution. The promotion of EVs and the charging stations are both equally required to be further developed in order EVs to move out of the cities and finally confront the range problem. In this work, a wind resource and a GIS analysis optimizes in a wider area the sitting of wind based charging stations and proposes an optimizing methodology.

Suggested Citation

  • George Xydis & Evanthia Nanaki, 2015. "Wind Energy Based Electric Vehicle Charging Stations Sitting. A GIS/Wind Resource Assessment Approach," Challenges, MDPI, vol. 6(2), pages 1-13, November.
  • Handle: RePEc:gam:jchals:v:6:y:2015:i:2:p:258-270:d:59473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/6/2/258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/6/2/258/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter A. Schulkin, 1993. "Analysis," Challenge, Taylor & Francis Journals, vol. 36(5), pages 59-60, September.
    2. Jamil, M. & Parsa, S. & Majidi, M., 1995. "Wind power statistics and an evaluation of wind energy density," Renewable Energy, Elsevier, vol. 6(5), pages 623-628.
    3. Vogiatzis, N. & Kotti, K. & Spanomitsios, S. & Stoukides, M., 2004. "Analysis of wind potential and characteristics in North Aegean, Greece," Renewable Energy, Elsevier, vol. 29(7), pages 1193-1208.
    4. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    5. Kose, Ramazan & Ozgur, M. Arif & Erbas, Oguzhan & Tugcu, Abtullah, 2004. "The analysis of wind data and wind energy potential in Kutahya, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 277-288, June.
    6. George Xydis & George Pechlivanoglou & Navid Christian Nayeri, 2015. "Wind Turbine Waste Heat Recovery—A Short-Term Heat Loss Forecasting Approach," Challenges, MDPI, vol. 6(2), pages 1-14, July.
    7. Rehman, S. & El-Amin, I.M. & Ahmad, F. & Shaahid, S.M. & Al-Shehri, A.M. & Bakhashwain, J.M., 2007. "Wind power resource assessment for Rafha, Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 937-950, June.
    8. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    9. Schneider, M. & Stenger, A. & Goeke, D., 2014. "The Electric Vehicle Routing Problem with Time Windows and Recharging Stations," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Antonio Colmenar-Santos & Carlos De Palacio & David Borge-Diez & Oscar Monzón-Alejandro, 2014. "Planning Minimum Interurban Fast Charging Infrastructure for Electric Vehicles: Methodology and Application to Spain," Energies, MDPI, vol. 7(3), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Xydis & Nick Vlachakis, 2019. "Feed-in-Premium Renewable Energy Support Scheme: A Scenario Approach," Resources, MDPI, vol. 8(2), pages 1-13, June.
    2. Wafaa Saleh & Shekaina Justin & Ghada Alsawah & Areej Malibari & Maha M A Lashin, 2021. "An Investigation into Conversion of a Fleet of Plug-in-Electric Golf Carts into Solar Powered Vehicles Using Fuzzy Logic Control," Energies, MDPI, vol. 14(17), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xydis, George, 2013. "A techno-economic and spatial analysis for the optimal planning of wind energy in Kythira island, Greece," International Journal of Production Economics, Elsevier, vol. 146(2), pages 440-452.
    2. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    3. Fyrippis, Ioannis & Axaopoulos, Petros J. & Panayiotou, Gregoris, 2010. "Wind energy potential assessment in Naxos Island, Greece," Applied Energy, Elsevier, vol. 87(2), pages 577-586, February.
    4. Xydis, George A. & Nanaki, Evanthia A. & Koroneos, Christopher J., 2013. "Low-enthalpy geothermal resources for electricity production: A demand-side management study for intelligent communities," Energy Policy, Elsevier, vol. 62(C), pages 118-123.
    5. Diaf, S. & Notton, G., 2013. "Technical and economic analysis of large-scale wind energy conversion systems in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 37-51.
    6. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    7. Roel M. Post & Paul Buijs & Michiel A. J. uit het Broek & Jose A. Lopez Alvarez & Nick B. Szirbik & Iris F. A. Vis, 2018. "A solution approach for deriving alternative fuel station infrastructure requirements," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 592-607, September.
    8. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    9. Bogyrbayeva, Aigerim & Kwon, Changhyun, 2021. "Pessimistic evasive flow capturing problems," European Journal of Operational Research, Elsevier, vol. 293(1), pages 133-148.
    10. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    11. Ana Bricia Galindo-Muro & Riccardo Cespi & Stephany Isabel Vallarta-Serrano, 2023. "Applications of Electric Vehicles in Instant Deliveries," Energies, MDPI, vol. 16(4), pages 1-18, February.
    12. Roberti, R. & Wen, M., 2016. "The Electric Traveling Salesman Problem with Time Windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 32-52.
    13. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    14. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    15. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    16. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    17. Snežana Tadić & Mladen Krstić & Ljubica Radovanović, 2024. "Assessing Strategies to Overcome Barriers for Drone Usage in Last-Mile Logistics: A Novel Hybrid Fuzzy MCDM Model," Mathematics, MDPI, vol. 12(3), pages 1-25, January.
    18. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    19. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
    20. Alberto Ceselli & Ángel Felipe & M. Teresa Ortuño & Giovanni Righini & Gregorio Tirado, 2021. "A Branch-and-Cut-and-Price Algorithm for the Electric Vehicle Routing Problem with Multiple Technologies," SN Operations Research Forum, Springer, vol. 2(1), pages 1-33, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:6:y:2015:i:2:p:258-270:d:59473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.