IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i9p1438-d912021.html
   My bibliography  Save this article

Greenhouse Gas Mitigation Costs of Reduced Nitrogen Fertilizer

Author

Listed:
  • Andreas Meyer-Aurich

    (Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany)

  • Yusuf Nadi Karatay

    (Embrapa Digital Agriculture, Campinas 13083-886, SP, Brazil)

Abstract

The reduction of nitrogen (N) fertilizer use is a possible greenhouse gas (GHG) mitigation option, whereas cost estimation highly depends on assumptions of the yield response function. This paper analyzes the potential and range of GHG mitigation costs with reduced N fertilizer application based on empirical yield response data for winter rye ( Secale cereale L.) and rapeseed ( Brassica napus L.) from field experiments from 2013 to 2020 in Brandenburg, Germany. The field experiments included four to five N rates as mineral fertilizer treatments. Three different functional forms (linear-plateau, quadratic, and quadratic-plateau) were estimated to model yield response as a function of N supply. Economic calculations were based on relevant price–cost ratios. The results indicate that the opportunity costs of applying less fertilizer and the resulting GHG mitigation thereof vary in a great range across the years and crops estimated by different yield response functions. The linear-plateau function predominantly results in lower GHG mitigation costs than the quadratic and the quadratic-plateau function. On average, over eight years, a moderate reduction of N fertilizer (up to 20 kg/ha) offers a cost-efficient option for mitigating GHG emissions below EUR 50 per ton of CO 2 eq, even resulting in net profit gain in some cases.

Suggested Citation

  • Andreas Meyer-Aurich & Yusuf Nadi Karatay, 2022. "Greenhouse Gas Mitigation Costs of Reduced Nitrogen Fertilizer," Agriculture, MDPI, vol. 12(9), pages 1-13, September.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1438-:d:912021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/9/1438/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/9/1438/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anda Fridrihsone & Francesco Romagnoli & Ugis Cabulis, 2020. "Environmental Life Cycle Assessment of Rapeseed and Rapeseed Oil Produced in Northern Europe: A Latvian Case Study," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    2. Mark A. Sutton & Oene Oenema & Jan Willem Erisman & Adrian Leip & Hans van Grinsven & Wilfried Winiwarter, 2011. "Too much of a good thing," Nature, Nature, vol. 472(7342), pages 159-161, April.
    3. Kimberly M. Carlson & James S. Gerber & Nathaniel D. Mueller & Mario Herrero & Graham K. MacDonald & Kate A. Brauman & Petr Havlik & Christine S. O’Connell & Justin A. Johnson & Sassan Saatchi & Paul , 2017. "Greenhouse gas emissions intensity of global croplands," Nature Climate Change, Nature, vol. 7(1), pages 63-68, January.
    4. Predrag Rajsic & Alfons Weersink & Markus Gandorfer, 2009. "Risk and Nitrogen Application Levels," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(2), pages 223-239, June.
    5. Kishan Mahmud & Dinesh Panday & Anaas Mergoum & Ali Missaoui, 2021. "Nitrogen Losses and Potential Mitigation Strategies for a Sustainable Agroecosystem," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    6. Xin Zhang & Eric A. Davidson & Denise L. Mauzerall & Timothy D. Searchinger & Patrice Dumas & Ye Shen, 2015. "Managing nitrogen for sustainable development," Nature, Nature, vol. 528(7580), pages 51-59, December.
    7. Camille Tevenart & Marielle Brunette, 2021. "Role of Farmers’ Risk and Ambiguity Preferences on Fertilization Decisions: An Experiment," Sustainability, MDPI, vol. 13(17), pages 1-27, August.
    8. Pellerin, Sylvain & Bamière, Laure & Angers, Denis & Béline, Fabrice & Benoit, Marc & Butault, Jean-Pierre & Chenu, Claire & Colnenne-David, Caroline & De Cara, Stéphane & Delame, Nathalie & Doreau, M, 2017. "Identifying cost-competitive greenhouse gas mitigation potential of French agriculture," Environmental Science & Policy, Elsevier, vol. 77(C), pages 130-139.
    9. David J. Pannell, 2006. "Flat Earth Economics: The Far-reaching Consequences of Flat Payoff Functions in Economic Decision Making," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(4), pages 553-566.
    10. Rajsic, Predrag & Weersink, Alfons, 2008. "Do farmers waste fertilizer? A comparison of ex post optimal nitrogen rates and ex ante recommendations by model, site and year," Agricultural Systems, Elsevier, vol. 97(1-2), pages 56-67, April.
    11. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    12. Paulson, Nicholas D. & Babcock, Bruce A., 2010. "Readdressing the Fertilizer Problem," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(3), pages 1-17, December.
    13. Athanasios Balafoutis & Bert Beck & Spyros Fountas & Jurgen Vangeyte & Tamme Van der Wal & Iria Soto & Manuel Gómez-Barbero & Andrew Barnes & Vera Eory, 2017. "Precision Agriculture Technologies Positively Contributing to GHG Emissions Mitigation, Farm Productivity and Economics," Sustainability, MDPI, vol. 9(8), pages 1-28, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    2. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    3. Yusuf Nadi Karatay & Andreas Meyer-Aurich, 2018. "A Model Approach for Yield-Zone-Specific Cost Estimation of Greenhouse Gas Mitigation by Nitrogen Fertilizer Reduction," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    4. Chai, Yuan & Pannell, David J. & Pardey, Philip G., 2022. "Reducing Water Pollution from Nitrogen Fertilizer: Revisiting Insights from Production Economics," Staff Papers 320519, University of Minnesota, Department of Applied Economics.
    5. Nordblom, Thomas L. & Hutchings, Timothy R. & Godfrey, Sosheel S. & Schefe, Cassandra R., 2021. "Precision variable rate nitrogen for dryland farming on waterlogging Riverine Plains of Southeast Australia?," Agricultural Systems, Elsevier, vol. 186(C).
    6. Späti, Karin & Huber, Robert & Finger, Robert, 2021. "Benefits of Increasing Information Accuracy in Variable Rate Technologies," Ecological Economics, Elsevier, vol. 185(C).
    7. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    8. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    9. Andreas Meyer-Aurich & Jørgen Olesen & Annette Prochnow & Reiner Brunsch, 2013. "Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(7), pages 921-932, October.
    10. Jiangying Guo & Jiwei Chen, 2022. "The Impact of Heavy Rainfall Variability on Fertilizer Application Rates: Evidence from Maize Farmers in China," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
    11. Ahmmed Md Motasim & Abd Wahid Samsuri & Arina Shairah Abdul Sukor & Amin Mohd Adibah, 2021. "Gaseous Nitrogen Losses from Tropical Soils with Liquid or Granular Urea Fertilizer Application," Sustainability, MDPI, vol. 13(6), pages 1-11, March.
    12. Pan Rao & Xiaojin Liu & Shubin Zhu & Xiaolan Kang & Xinglei Zhao & Fangting Xie, 2022. "Does the Application of ICTs Improve the Efficiency of Agricultural Carbon Reduction? Evidence from Broadband Adoption in Rural China," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    13. Monjardino, M. & McBeath, T. & Ouzman, J. & Llewellyn, R. & Jones, B., 2015. "Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt," Agricultural Systems, Elsevier, vol. 137(C), pages 108-118.
    14. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    15. Javier Martínez-Dalmau & Julio Berbel & Rafaela Ordóñez-Fernández, 2021. "Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    16. Meyer-Aurich, Andreas & Weersink, Alfons & Gandorfer, Markus & Wagner, Peter, 2010. "Optimal site-specific fertilization and harvesting strategies with respect to crop yield and quality response to nitrogen," Agricultural Systems, Elsevier, vol. 103(7), pages 478-485, September.
    17. Asci, Serhat & Borisova, Tatiana & VanSickle, John J. & Zotarelli, Lincoln, 2012. "Risk and Nitrogen Application Decisions in Florida Potato Production," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119797, Southern Agricultural Economics Association.
    18. Kerry J. Stott & Brendan Christy & Malcolm McCaskill & Kurt K. Benke & Penny Riffkin & Garry J. O'Leary & Robert Norton, 2020. "Integrating crop modelling and production economics to investigate multiple nutrient deficiencies and yield gaps," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 655-676, July.
    19. Hyytiäinen, Kari & Niemi, Jarkko K. & Koikkalainen, Kauko & Palosuo, Taru & Salo, Tapio, 2011. "Adaptive optimization of crop production and nitrogen leaching abatement under yield uncertainty," Agricultural Systems, Elsevier, vol. 104(8), pages 634-644, October.
    20. Monjardino, Marta & McBeath, T. & Brennan, Lisa E. & Llewellyn, Rick S., 2012. "Are farmers in low-rainfall cropping regions under-fertilizing? An Australian case-study," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 124976, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:9:p:1438-:d:912021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.