IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v32y2014icp186-193.html
   My bibliography  Save this article

Road freight transport decoupling: A comparative analysis between the United Kingdom and Spain

Author

Listed:
  • Alises, Ana
  • Vassallo, Jose Manuel
  • Guzmán, Andrés Felipe

Abstract

Economic growth has traditionally been linked to road freight transport demand, leading to a steady rise in social and environmental impacts. Concern about this problem has caused the EU to promote a decoupling strategy aimed at boosting sustainable development in European countries by improving the efficiency of transport systems without curbing economic growth. Over the last few years empirical evidence in some countries such as the United Kingdom has shown an increase in GDP while the volume of road freight traffic has remained stable or even decreased. This paper compares recent decoupling trends by analyzing the evolution of road tonne-kms/GDP relationship in the United Kingdom and Spain from 1999 to 2007. This comparison seeks to identify the main differences and key drivers of decoupling in both countries. We first provide an overview of the divergences between both economic structures and levels of road transport intensity. Then we conduct a decomposition analysis in order to identify the variables that explain the evolution of truck traffic per unit of GDP in each country. The results show that the increasing share of services in GDP has substantially contributed to decreasing road transport demand in both cases. Changes in road transport intensity due to improvements in logistic and supply chain management have been more successful in the UK than in Spain.

Suggested Citation

  • Alises, Ana & Vassallo, Jose Manuel & Guzmán, Andrés Felipe, 2014. "Road freight transport decoupling: A comparative analysis between the United Kingdom and Spain," Transport Policy, Elsevier, vol. 32(C), pages 186-193.
  • Handle: RePEc:eee:trapol:v:32:y:2014:i:c:p:186-193
    DOI: 10.1016/j.tranpol.2014.01.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X14000286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2014.01.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bennathan, Esra*Fraser, Julie*Thompson, Louis S., 1992. "What determines demand for freight transport?," Policy Research Working Paper Series 998, The World Bank.
    2. Erik Dietzenbacher & Bart Los, 1997. "Analyzing Decomposition Analyses," Palgrave Macmillan Books, in: András Simonovits & Albert E. Steenge (ed.), Prices, Growth and Cycles, chapter 6, pages 108-131, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyan Wu & Saini Yang & Feng Yang & Xihui Yin, 2021. "Road Weather Monitoring System Shows High Cost-Effectiveness in Mitigating Malfunction Losses," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    2. Dayong Wu & Changwei Yuan & Hongchao Liu, 2018. "The decoupling states of CO2 emissions in the Chinese transport sector from 1994 to 2012: A perspective on fuel types," Energy & Environment, , vol. 29(4), pages 591-612, June.
    3. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    4. Yan, Shiyu & De Bruin, Kelly & Dennehy, Emer & Curtis, John, 2020. "A freight transport demand, energy and emission model with technological choices," Papers WP669, Economic and Social Research Institute (ESRI).
    5. Tob-Ogu, Abiye & Kumar, Niraj & Cullen, John, 2018. "ICT adoption in road freight transport in Nigeria – A case study of the petroleum downstream sector," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 240-252.
    6. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    7. Gomez, Juan & Vassallo, José Manuel, 2015. "Evolution over time of heavy vehicle volume in toll roads: A dynamic panel data to identify key explanatory variables in Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 282-297.
    8. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    9. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    10. Hilal Y?ld?r?r Keser* & Kadir Y. Eryi?it, 2018. "The Impact of the Logistic Sector on Competitiveness in the Presence of Structural Breaks: A Study on Turkey," The Journal of Social Sciences Research, Academic Research Publishing Group, vol. 4(11), pages 246-256, 11-2018.
    11. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    12. Løvold Rødseth, Kenneth, 2017. "Productivity growth in urban freight transport: An index number approach," Transport Policy, Elsevier, vol. 56(C), pages 86-95.
    13. Moschovou, Tatiana P., 2017. "Freight transport impacts from the economic crisis in Greece," Transport Policy, Elsevier, vol. 57(C), pages 51-58.
    14. Wang, Hui & Han, Jiaying & Su, Min & Wan, Shulin & Zhang, Zhenchao, 2021. "The relationship between freight transport and economic development: A case study of China," Research in Transportation Economics, Elsevier, vol. 85(C).
    15. Abiye Tob-Ogu & Niraj Kumar & John Cullen & Erica E. F. Ballantyne, 2018. "Sustainability Intervention Mechanisms for Managing Road Freight Transport Externalities: A Systematic Literature Review," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    16. Yan, Shiyu & de Bruin, Kelly & Dennehy, Emer & Curtis, John, 2021. "Climate policies for freight transport: Energy and emission projections through 2050," Transport Policy, Elsevier, vol. 107(C), pages 11-23.
    17. Carlos Scheel & Eduardo Aguiñaga & Bernardo Bello, 2020. "Decoupling Economic Development from the Consumption of Finite Resources Using Circular Economy. A Model for Developing Countries," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    18. Ivan Kristek, 2023. "An Analysis Of The Relationship Between Road Freight Transport And Economic Growth In The European Union: A Panel Data Approach," Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek, Faculty of Economics, Croatia, vol. 23, pages 33-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goulden, Murray & Ryley, Tim & Dingwall, Robert, 2014. "Beyond ‘predict and provide’: UK transport, the growth paradigm and climate change," Transport Policy, Elsevier, vol. 32(C), pages 139-147.
    2. Ni, Linglin & Wang, Xiaokun (Cara) & Zhang, Dapeng, 2016. "Impacts of information technology and urbanization on less-than-truckload freight flows in China: An analysis considering spatial effects," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 12-25.
    3. Tong Zhao & Zhijie Song & Tianjiao Li, 2018. "Effect of innovation capacity, production capacity and vertical specialization on innovation performance in China's electronic manufacturing: Analysis from the supply and demand sides," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    4. Ingram, Gregory K. & Zhi Liu, 1997. "Motorization and the provision of roads in countries and cities," Policy Research Working Paper Series 1842, The World Bank.
    5. Erik Dietzenbacher & Bart Los, 2000. "Structural Decomposition Analyses with Dependent Determinants," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 497-514.
    6. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
    7. Wohlgemuth, Norbert, 1997. "World transport energy demand modelling : Methodology and elasticities," Energy Policy, Elsevier, vol. 25(14-15), pages 1109-1119, December.
    8. Eom, Jiyong & Schipper, Lee & Thompson, Lou, 2012. "We keep on truckin': Trends in freight energy use and carbon emissions in 11 IEA countries," Energy Policy, Elsevier, vol. 45(C), pages 327-341.
    9. Lynn Price & Laurie Michaelis & Ernst Worrell & Marta Khrushch, 1998. "Sectoral Trends and Driving Forces of Global Energy Use and Greenhouse Gas Emissions," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 3(2), pages 263-319, December.
    10. Eduardo A. Haddad & Renato S. Vieira & Inácio F. Araújo & Silvio M. Ichihara & Fernando S. Perobelli & Karina S. S. Bugarin, 2022. "COVID-19 crisis monitor: assessing the effectiveness of exit strategies in the State of São Paulo, Brazil," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 501-525, April.
    11. Jean-Paul Rodrigue, 2006. "Challenging the Derived Transport-Demand Thesis: Geographical Issues in Freight Distribution," Environment and Planning A, , vol. 38(8), pages 1449-1462, August.
    12. Alises, Ana & Vassallo, José Manuel, 2015. "Comparison of road freight transport trends in Europe. Coupling and decoupling factors from an Input–Output structural decomposition analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 141-157.
    13. Galina Ševčenko-Kozlovska & Kristina Čižiūnienė, 2022. "The Impact of Economic Sustainability in the Transport Sector on GDP of Neighbouring Countries: Following the Example of the Baltic States," Sustainability, MDPI, vol. 14(6), pages 1-26, March.
    14. Strohmaier, Rita & Rainer, Andreas, 2013. "On the Eonomic Purpose of General Purpose Technologies: A Combined Classical and Evolutionary Framework," MPRA Paper 45964, University Library of Munich, Germany.
    15. Wang, Fei & Dong, Baomin & Yin, Xiaopeng & An, Chi, 2014. "China's structural change: A new SDA model," Economic Modelling, Elsevier, vol. 43(C), pages 256-266.
    16. Strohmaier, R. & Rainer, A., 2016. "Studying general purpose technologies in a multi-sector framework: The case of ICT in Denmark," Structural Change and Economic Dynamics, Elsevier, vol. 36(C), pages 34-49.
    17. Greening, Lorna A. & Ting, Mike & Davis, William B., 1999. "Decomposition of aggregate carbon intensity for freight: trends from 10 OECD countries for the period 1971-1993," Energy Economics, Elsevier, vol. 21(4), pages 331-361, August.
    18. Dietzenbacher, Erik, 2000. "Spillovers of Innovation Effects," Journal of Policy Modeling, Elsevier, vol. 22(1), pages 27-42, January.
    19. Muhammad Shafique & Anam Azam & Muhammad Rafiq & Xiaowei Luo, 2020. "Evaluating the Relationship between Freight Transport, Economic Prosperity, Urbanization, and CO 2 Emissions: Evidence from Hong Kong, Singapore, and South Korea," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    20. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:32:y:2014:i:c:p:186-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.