IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v138y2020ics1366554519303734.html
   My bibliography  Save this article

Adaptive large neighborhood search for the time-dependent profitable pickup and delivery problem with time windows

Author

Listed:
  • Sun, Peng
  • Veelenturf, Lucas P.
  • Hewitt, Mike
  • Van Woensel, Tom

Abstract

The rise of e-commerce has increased the demands placed on pickup and delivery operations, as well as customer expectations regarding the quality of services provided by those operations. One strategy a logistics provider can employ for meeting these increases in demands and expectations is to complement and coordinate its fleet operations with those of for-hire, third-party logistics providers. Herein, we study an optimization problem for coordinating these operations: the time-dependent profitable pickup and delivery problem with time windows. In this problem, the logistics provider has the opportunity to use its fleet of capacitated vehicles to transport shipment requests, for a profit, from pickup to delivery locations. Owing to demographic and market trends, we focus on an urban setting, wherein road congestion is a factor. As a result, the problem explicitly recognizes that travel times may be time-dependent. The logistics provider seeks to maximize its profits from serving transportation requests, which we compute as the difference between the profits associated with transported requests and transportation costs. To solve this problem, we propose an adaptive large neighborhood search algorithm. The results of our extensive computational study show that the proposed algorithm can find high-quality solutions quickly on instances with up to 75 transportation requests. Furthermore, we study its impact on profits when explicitly recognizing traffic congestion during planning operations.

Suggested Citation

  • Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2020. "Adaptive large neighborhood search for the time-dependent profitable pickup and delivery problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:transe:v:138:y:2020:i:c:s1366554519303734
    DOI: 10.1016/j.tre.2020.101942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554519303734
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.101942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    3. Cordeau, Jean-François & Laporte, Gilbert, 2003. "A tabu search heuristic for the static multi-vehicle dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 579-594, July.
    4. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    5. Chryssi Malandraki & Mark S. Daskin, 1992. "Time Dependent Vehicle Routing Problems: Formulations, Properties and Heuristic Algorithms," Transportation Science, INFORMS, vol. 26(3), pages 185-200, August.
    6. Visser, T.R. & Spliet, R., 2017. "Efficient Move Evaluations for Time-Dependent Vehicle Routing Problems," Econometric Institute Research Papers EI2017-23, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    7. Donati, Alberto V. & Montemanni, Roberto & Casagrande, Norman & Rizzoli, Andrea E. & Gambardella, Luca M., 2008. "Time dependent vehicle routing problem with a multi ant colony system," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1174-1191, March.
    8. Ichoua, Soumia & Gendreau, Michel & Potvin, Jean-Yves, 2003. "Vehicle dispatching with time-dependent travel times," European Journal of Operational Research, Elsevier, vol. 144(2), pages 379-396, January.
    9. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    10. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.
    11. Sun, Peng & Veelenturf, Lucas P. & Dabia, Said & Van Woensel, Tom, 2018. "The time-dependent capacitated profitable tour problem with time windows and precedence constraints," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1058-1073.
    12. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    13. Schilde, M. & Doerner, K.F. & Hartl, R.F., 2014. "Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 18-30.
    14. Fu, Liping, 2002. "Scheduling dial-a-ride paratransit under time-varying, stochastic congestion," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 485-506, July.
    15. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    16. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    17. Jean-François Cordeau & Gianpaolo Ghiani & Emanuela Guerriero, 2014. "Analysis and Branch-and-Cut Algorithm for the Time-Dependent Travelling Salesman Problem," Transportation Science, INFORMS, vol. 48(1), pages 46-58, February.
    18. Wang, Zheng, 2018. "Delivering meals for multiple suppliers: Exclusive or sharing logistics service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 496-512.
    19. Margaretha Gansterer & Murat Küçüktepe & Richard F. Hartl, 2017. "The multi-vehicle profitable pickup and delivery problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 303-319, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    2. Lin, Na & Akkerman, Renzo & Kanellopoulos, Argyris & Hu, Xiangpei & Wang, Xuping & Ruan, Junhu, 2023. "Vehicle routing with heterogeneous service types: Optimizing post-harvest preprocessing operations for fruits and vegetables in short food supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    3. Chang, Ximing & Wu, Jianjun & Correia, Gonçalo Homem de Almeida & Sun, Huijun & Feng, Ziyan, 2022. "A cooperative strategy for optimizing vehicle relocations and staff movements in cities where several carsharing companies operate simultaneously," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    4. Côté, Jean-François & Alves de Queiroz, Thiago & Gallesi, Francesco & Iori, Manuel, 2023. "A branch-and-regret algorithm for the same-day delivery problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    5. Rifki, Omar & Chiabaut, Nicolas & Solnon, Christine, 2020. "On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    8. Fontaine, Romain & Dibangoye, Jilles & Solnon, Christine, 2023. "Exact and anytime approach for solving the time dependent traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 311(3), pages 833-844.
    9. Aziez, Imadeddine & Côté, Jean-François & Coelho, Leandro C., 2022. "Fleet sizing and routing of healthcare automated guided vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    10. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    11. Cui, Shaohua & Ma, Xiaolei & Zhang, Mingheng & Yu, Bin & Yao, Baozhen, 2022. "The parallel mobile charging service for free-floating shared electric vehicle clusters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    12. Fang Zhao & Bingfeng Si & Zhenlin Wei & Tianwei Lu, 2023. "Time-dependent vehicle routing problem of perishable product delivery considering the differences among paths on the congested road," Operational Research, Springer, vol. 23(1), pages 1-23, March.
    13. Yu, Vincent F. & Jodiawan, Panca & Redi, A.A.N. Perwira, 2022. "Crowd-shipping problem with time windows, transshipment nodes, and delivery options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    14. Huang, Baobin & Tang, Lixin & Baldacci, Roberto & Wang, Gongshu & Sun, Defeng, 2023. "A metaheuristic algorithm for a locomotive routing problem arising in the steel industry," European Journal of Operational Research, Elsevier, vol. 308(1), pages 385-399.
    15. Zhen, Lu & Baldacci, Roberto & Tan, Zheyi & Wang, Shuaian & Lyu, Junyan, 2022. "Scheduling heterogeneous delivery tasks on a mixed logistics platform," European Journal of Operational Research, Elsevier, vol. 298(2), pages 680-698.
    16. Fu, Zhexi & Chow, Joseph Y.J., 2022. "The pickup and delivery problem with synchronized en-route transfers for microtransit planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    17. Bao, Dan-Wen & Zhou, Jia-Yi & Zhang, Zi-Qian & Chen, Zhuo & Kang, Di, 2023. "Mixed fleet scheduling method for airport ground service vehicles under the trend of electrification," Journal of Air Transport Management, Elsevier, vol. 108(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Binbin & Zhang, Zhenzhen & Lim, Andrew, 2021. "Multi-trip time-dependent vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 291(1), pages 218-231.
    2. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    3. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    4. Verbeeck, C. & Vansteenwegen, P. & Aghezzaf, E.-H., 2016. "Solving the stochastic time-dependent orienteering problem with time windows," European Journal of Operational Research, Elsevier, vol. 255(3), pages 699-718.
    5. Rincon-Garcia, Nicolas & Waterson, Ben & Cherrett, Tom J. & Salazar-Arrieta, Fernando, 2020. "A metaheuristic for the time-dependent vehicle routing problem considering driving hours regulations – An application in city logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 429-446.
    6. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    7. Lu, Jiawei & Nie, Qinghui & Mahmoudi, Monirehalsadat & Ou, Jishun & Li, Chongnan & Zhou, Xuesong Simon, 2022. "Rich arc routing problem in city logistics: Models and solution algorithms using a fluid queue-based time-dependent travel time representation," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 143-182.
    8. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    9. Sun, Peng & Veelenturf, Lucas P. & Dabia, Said & Van Woensel, Tom, 2018. "The time-dependent capacitated profitable tour problem with time windows and precedence constraints," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1058-1073.
    10. Avraham, Edison & Raviv, Tal, 2020. "The data-driven time-dependent traveling salesperson problem," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 25-40.
    11. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    12. Zhixing Luo & Hu Qin & Wenbin Zhu & Andrew Lim, 2017. "Branch and Price and Cut for the Split-Delivery Vehicle Routing Problem with Time Windows and Linear Weight-Related Cost," Transportation Science, INFORMS, vol. 51(2), pages 668-687, May.
    13. Lera-Romero, Gonzalo & Miranda-Bront, Juan José, 2021. "A branch and cut algorithm for the time-dependent profitable tour problem with resource constraints," European Journal of Operational Research, Elsevier, vol. 289(3), pages 879-896.
    14. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    15. Schmidt, Carise E. & Silva, Arinei C.L. & Darvish, Maryam & Coelho, Leandro C., 2023. "Time-dependent fleet size and mix multi-depot vehicle routing problem," International Journal of Production Economics, Elsevier, vol. 255(C).
    16. Yiming Liu & Yang Yu & Yu Zhang & Roberto Baldacci & Jiafu Tang & Xinggang Luo & Wei Sun, 2023. "Branch-Cut-and-Price for the Time-Dependent Green Vehicle Routing Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 14-30, January.
    17. Rifki, Omar & Chiabaut, Nicolas & Solnon, Christine, 2020. "On the impact of spatio-temporal granularity of traffic conditions on the quality of pickup and delivery optimal tours," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    18. Aarabi, Fatemeh & Batta, Rajan, 2020. "Scheduling spatially distributed jobs with degradation: Application to pothole repair," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    19. Lu, Chang & Wu, Yuehui & Yu, Shanchuan, 2022. "A Sample Average Approximation Approach for the Stochastic Dial-A-Ride Problem on a Multigraph with User Satisfaction," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1031-1044.
    20. Fontaine, Romain & Dibangoye, Jilles & Solnon, Christine, 2023. "Exact and anytime approach for solving the time dependent traveling salesman problem with time windows," European Journal of Operational Research, Elsevier, vol. 311(3), pages 833-844.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:138:y:2020:i:c:s1366554519303734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.