IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v252y2016i1p27-38.html
   My bibliography  Save this article

Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests

Author

Listed:
  • Li, Yuan
  • Chen, Haoxun
  • Prins, Christian

Abstract

This paper addresses the Pickup and Delivery Problem with Time Windows, Profits, and Reserved Requests (PDPTWPR), a new vehicle routing problem appeared in carrier collaboration realized through Combinatorial Auction (CA). In carrier collaboration, several carriers form an alliance and exchange some of their transportation requests. Each carrier has reserved requests, which will be served by itself, whereas its other requests called selective requests may be served by the other carriers. Each request is a pickup and delivery request associated with an origin, a destination, a quantity, two time windows, and a price for serving the request paid by its corresponding shipper. For each carrier in CA, it has to determine which selective requests to serve, in addition to its reserved requests, and builds feasible routes to maximize its total profit. A Mixed-Integer Linear Programming (MILP) model is formulated for the problem and an adaptive large neighborhood search (ALNS) approach is developed. The ALNS involves ad-hoc destroy/repair operators and a local search procedure. It runs in successive segments which change the behavior of operators and compute their own statistics to adapt selection probabilities of operators. The MILP model and the ALNS approach are evaluated on 54 randomly generated instances with 10–100 requests. The computational results indicate that the ALNS significantly outperforms the solver, not only in terms of solution quality but also in terms of CPU time.

Suggested Citation

  • Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
  • Handle: RePEc:eee:ejores:v:252:y:2016:i:1:p:27-38
    DOI: 10.1016/j.ejor.2015.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715011716
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Triki, Chefi & Oprea, Simona & Beraldi, Patriza & Crainic, Teodor Gabriel, 2014. "The stochastic bid generation problem in combinatorial transportation auctions," European Journal of Operational Research, Elsevier, vol. 236(3), pages 991-999.
    3. Lee, Chi-Guhn & Kwon, Roy H. & Ma, Zhong, 2007. "A carrier's optimal bid generation problem in combinatorial auctions for transportation procurement," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(2), pages 173-191, March.
    4. Hernández, Salvador & Peeta, Srinivas & Kalafatas, George, 2011. "A less-than-truckload carrier collaboration planning problem under dynamic capacities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 933-946.
    5. Cruijssen, Frans & Cools, Martine & Dullaert, Wout, 2007. "Horizontal cooperation in logistics: Opportunities and impediments," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(2), pages 129-142, March.
    6. Lotte Verdonck & AN Caris & Katrien Ramaekers & Gerrit K. Janssens, 2013. "Collaborative Logistics from the Perspective of Road Transportation Companies," Transport Reviews, Taylor & Francis Journals, vol. 33(6), pages 700-719, November.
    7. Wang, Xin & Kopfer, Herbert & Gendreau, Michel, 2014. "Operational transportation planning of freight forwarding companies in horizontal coalitions," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1133-1141.
    8. Nanry, William P. & Wesley Barnes, J., 2000. "Solving the pickup and delivery problem with time windows using reactive tabu search," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 107-121, February.
    9. Bo Dai & Haoxun Chen, 2015. "Proportional egalitarian core solution for profit allocation games with an application to collaborative transportation planning," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 9(1), pages 53-76.
    10. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    11. Claudia Archetti & M. Grazia Speranza & Ángel Corberán & José M. Sanchis & Isaac Plana, 2014. "The Team Orienteering Arc Routing Problem," Transportation Science, INFORMS, vol. 48(3), pages 442-457, August.
    12. Aksen, Deniz & Kaya, Onur & Sibel Salman, F. & Tüncel, Özge, 2014. "An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 413-426.
    13. Labadie, Nacima & Mansini, Renata & Melechovský, Jan & Wolfler Calvo, Roberto, 2012. "The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search," European Journal of Operational Research, Elsevier, vol. 220(1), pages 15-27.
    14. Krajewska, Marta Anna & Kopfer, Herbert, 2009. "Transportation planning in freight forwarding companies: Tabu search algorithm for the integrated operational transportation planning problem," European Journal of Operational Research, Elsevier, vol. 197(2), pages 741-751, September.
    15. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "The team orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 464-474, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hammami, Farouk & Rekik, Monia & Coelho, Leandro C., 2019. "Exact and heuristic solution approaches for the bid construction problem in transportation procurement auctions with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 150-177.
    2. Gansterer, Margaretha & Hartl, Richard F., 2018. "Collaborative vehicle routing: A survey," European Journal of Operational Research, Elsevier, vol. 268(1), pages 1-12.
    3. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    4. Ziebuhr, Mario & Kopfer, Herbert, 2016. "Solving an integrated operational transportation planning problem with forwarding limitations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 149-166.
    5. Gansterer, Margaretha & Hartl, Richard F. & Sörensen, Kenneth, 2020. "Pushing frontiers in auction-based transport collaborations," Omega, Elsevier, vol. 94(C).
    6. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    7. Molenbruch, Yves & Braekers, Kris & Caris, An, 2017. "Benefits of horizontal cooperation in dial-a-ride services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 97-119.
    8. Nassim Mrabti & Nadia Hamani & Laurent Delahoche, 2022. "A Comprehensive Literature Review on Sustainable Horizontal Collaboration," Sustainability, MDPI, vol. 14(18), pages 1-38, September.
    9. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    10. Lai, Minghui & Cai, Xiaoqiang & Li, Xiang, 2017. "Mechanism design for collaborative production-distribution planning with shipment consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 137-159.
    11. Rahma Lahyani & Mahdi Khemakhem & Frédéric Semet, 2017. "A unified matheuristic for solving multi-constrained traveling salesman problems with profits," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 393-422, September.
    12. Oruc, Buse Eylul & Kara, Bahar Yetis, 2018. "Post-disaster assessment routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 76-102.
    13. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    14. Lai, Minghui & Cai, Xiaoqiang & Hu, Qian, 2017. "An iterative auction for carrier collaboration in truckload pickup and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 60-80.
    15. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    16. Soriano, Adria & Gansterer, Margaretha & Hartl, Richard F., 2023. "The multi-depot vehicle routing problem with profit fairness," International Journal of Production Economics, Elsevier, vol. 255(C).
    17. Lyu, Xiaohui & Chen, Haoxun & Wang, Nengmin & Yang, Zhen, 2019. "A multi-round exchange mechanism for carrier collaboration in less than truckload transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 38-59.
    18. Margaretha Gansterer & Richard F. Hartl, 2016. "Request evaluation strategies for carriers in auction-based collaborations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 3-23, January.
    19. Jean-Yves Potvin, 2009. "State-of-the Art Review ---Evolutionary Algorithms for Vehicle Routing," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 518-548, November.
    20. Zhang, Qihuan & Wang, Ziteng & Huang, Min & Yu, Yang & Fang, Shu-Cherng, 2022. "Heterogeneous multi-depot collaborative vehicle routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:252:y:2016:i:1:p:27-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.