IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v116y2018icp70-89.html
   My bibliography  Save this article

Multi-dual decomposition solution for risk-averse facility location problem

Author

Listed:
  • Yu, Guodong
  • Zhang, Jie

Abstract

We consider the risk-averse uncapacitated facility location problem under stochastic disruptions. By the Conditional-value-at-risk, we control the risks at each individual customer, while previous works usually control the entire networks. We show that our model provides more reliable solutions than previous ones. The resulting formulation is a mixed-integer nonlinear programming. In response, we develop a multi-dual decomposition algorithm based on the augmented Lagrangian and classic penalty function. A class of decomposed unconstrained subproblems are then solved by an iterative approach not relying on Lagrange multipliers and differentiability. Our experiments show that the algorithm performs well even for some larger problems.

Suggested Citation

  • Yu, Guodong & Zhang, Jie, 2018. "Multi-dual decomposition solution for risk-averse facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 70-89.
  • Handle: RePEc:eee:transe:v:116:y:2018:i:c:p:70-89
    DOI: 10.1016/j.tre.2018.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554517312747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2018.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    2. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    3. Alexander Shapiro, 2013. "On Kusuoka Representation of Law Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 142-152, February.
    4. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    5. Li, Xiaopeng & Ouyang, Yanfeng & Peng, Fan, 2013. "A supporting station model for reliable infrastructure location design under interdependent disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 80-93.
    6. Michael Lim & Mark S. Daskin & Achal Bassamboo & Sunil Chopra, 2010. "A facility reliability problem: Formulation, properties, and algorithm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 58-70, February.
    7. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    8. Haskell, William B. & Fu, Lunce & Dessouky, Maged, 2016. "Ambiguity in risk preferences in robust stochastic optimization," European Journal of Operational Research, Elsevier, vol. 254(1), pages 214-225.
    9. Ouyang, Yanfeng & Wang, Zhaodong & Yang, Hai, 2015. "Facility location design under continuous traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 18-33.
    10. Michael K. Lim & Achal Bassamboo & Sunil Chopra & Mark S. Daskin, 2013. "Facility Location Decisions with Random Disruptions and Imperfect Estimation," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 239-249, May.
    11. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    12. Mozart Menezes & O. Berman & D. Krass, 2007. "Facility Reliability Issues in Network p-Median Problems: Strategic Centralization and Co-location Effects," Post-Print halshs-00170396, HAL.
    13. Berman, Oded & Sanajian, Nima & Wang, Jiamin, 2017. "Location choice and risk attitude of a decision maker," Omega, Elsevier, vol. 66(PA), pages 170-181.
    14. Schmitt, Amanda J. & Sun, Siyuan Anthony & Snyder, Lawrence V. & Shen, Zuo-Jun Max, 2015. "Centralization versus decentralization: Risk pooling, risk diversification, and supply chain disruptions," Omega, Elsevier, vol. 52(C), pages 201-212.
    15. Wang, Xin & Ouyang, Yanfeng, 2013. "A continuum approximation approach to competitive facility location design under facility disruption risks," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 90-103.
    16. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    17. Xie, Siyang & Li, Xiaopeng & Ouyang, Yanfeng, 2015. "Decomposition of general facility disruption correlations via augmentation of virtual supporting stations," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 64-81.
    18. Chen, Qi & Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Joint inventory-location problem under the risk of probabilistic facility disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 991-1003, August.
    19. Snyder, Lawrence V. & Daskin, Mark S. & Teo, Chung-Piaw, 2007. "The stochastic location model with risk pooling," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1221-1238, June.
    20. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    21. Yu, Guodong & Haskell, William B. & Liu, Yang, 2017. "Resilient facility location against the risk of disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 82-105.
    22. Ho-Yin Mak & Zuo-Jun Shen, 2012. "Risk diversification and risk pooling in supply chain design," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 603-621.
    23. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    24. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    2. Sun, Huiping & Li, Yuchen & Zhang, Jianghua, 2022. "Collaboration-based reliable optimal casualty evacuation network design for large-scale emergency preparedness," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    3. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. Xie, Lei & Hou, Pengwen & Han, Hongshuai, 2021. "Implications of government subsidy on the vaccine product R&D when the buyer is risk averse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    5. Li, Qing & Li, Mingchu & Tian, Yuan & Gan, Jianyuan, 2023. "A risk-averse tri-level stochastic model for locating and recovering facilities against attacks in an uncertain environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Zhong, Shaopeng & Cheng, Rong & Jiang, Yu & Wang, Zhong & Larsen, Allan & Nielsen, Otto Anker, 2020. "Risk-averse optimization of disaster relief facility location and vehicle routing under stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    7. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Guodong & Haskell, William B. & Liu, Yang, 2017. "Resilient facility location against the risk of disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 82-105.
    2. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    3. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    4. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    5. Yun, Lifen & Wang, Xifu & Fan, Hongqiang & Li, Xiaopeng, 2020. "Reliable facility location design with round-trip transportation under imperfect information Part I: A discrete model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    6. Xiao Zhao & Xuhui Xia & Lei Wang & Guodong Yu, 2018. "Risk-Averse Facility Location for Green Closed-Loop Supply Chain Networks Design under Uncertainty," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    7. Wang, Zhaodong & Xie, Siyang & Ouyang, Yanfeng, 2022. "Planning reliable service facility location against disruption risks and last-mile congestion in a continuous space," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 123-140.
    8. Cui, Jianxun & Zhao, Meng & Li, Xiaopeng & Parsafard, Mohsen & An, Shi, 2016. "Reliable design of an integrated supply chain with expedited shipments under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 143-163.
    9. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    10. Xie, Siyang & An, Kun & Ouyang, Yanfeng, 2019. "Planning facility location under generally correlated facility disruptions: Use of supporting stations and quasi-probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 115-139.
    11. Xie, Siyang & Ouyang, Yanfeng, 2019. "Reliable service systems design under the risk of network access failures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 1-13.
    12. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    13. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    14. An, Shi & Cui, Na & Li, Xiaopeng & Ouyang, Yanfeng, 2013. "Location planning for transit-based evacuation under the risk of service disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 54(C), pages 1-16.
    15. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    16. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    17. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    18. Fan, Hongqiang & Yun, Lifen & Li, Xiaopeng, 2022. "A linear-time crystal-growth algorithm for discretization of continuum approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    19. Wang, Xin & Lim, Michael K. & Ouyang, Yanfeng, 2015. "Infrastructure deployment under uncertainties and competition: The biofuel industry case," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 1-15.
    20. Asefeh Hasani Goodarzi & Seyed Hessameddin Zegordi & Gülgün Alpan & Isa Nakhai Kamalabadi & Ali Husseinzadeh Kashan, 2021. "Reliable cross-docking location problem under the risk of disruptions," Operational Research, Springer, vol. 21(3), pages 1569-1612, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:116:y:2018:i:c:p:70-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.