IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v145y2021ics1366554520308176.html
   My bibliography  Save this article

Comparative analysis of models and performance indicators for optimal service facility location

Author

Listed:
  • Fadda, Edoardo
  • Manerba, Daniele
  • Cabodi, Gianpiero
  • Camurati, Paolo Enrico
  • Tadei, Roberto

Abstract

This study investigates the optimal process for locating generic service facilities by applying and comparing several well-known basic models from the literature. At a strategic level, we emphasize that selecting the right location model to use could result in a problematic and possibly misleading task if not supported by appropriate quantitative analysis. For this reason, we propose a general methodological framework to analyze and compare the solutions provided by several models to obtain a comprehensive evaluation of the location decisions from several different perspectives. Therefore, a battery of key performance indicators (KPIs) has been developed and calculated for the different models’ solutions. Additional insights into the decision process have been obtained through a comparative analysis. The indicators involve topological, coverage, equity, robustness, dispersion, and accessibility aspects. Moreover, a specific part of the analysis is devoted to progressive location interventions over time and identifying core location decisions. Results on randomly generated instances, which simulate areas characterized by realistic geographical or demographic features, are reported to analyze the models’ behavior in different settings and demonstrate the methodology’s general applicability. Our experimental campaign shows that the p-median model behaves very well against the proposed KPIs. In contrast, the maximal covering problem and some proposed back-up coverage models return very robust solutions when the location plan is implemented through several progressive interventions over time.

Suggested Citation

  • Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:transe:v:145:y:2021:i:c:s1366554520308176
    DOI: 10.1016/j.tre.2020.102174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520308176
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.102174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    2. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    3. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    4. Fadda, Edoardo & Perboli, Guido & Tadei, Roberto, 2019. "A progressive hedging method for the optimization of social engagement and opportunistic IoT problems," European Journal of Operational Research, Elsevier, vol. 277(2), pages 643-652.
    5. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    6. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    7. Kathleen Hogan & Charles ReVelle, 1986. "Concepts and Applications of Backup Coverage," Management Science, INFORMS, vol. 32(11), pages 1434-1444, November.
    8. Edoardo Fadda & Luca Gobbato & Guido Perboli & Mariangela Rosano & Roberto Tadei, 2018. "Waste Collection in Urban Areas: A Case Study," Interfaces, INFORMS, vol. 48(4), pages 307-322, August.
    9. David S. Johnson & Lee Breslau & Ilias Diakonikolas & Nick Duffield & Yu Gu & MohammadTaghi Hajiaghayi & Howard Karloff & Mauricio G. C. Resende & Subhabrata Sen, 2020. "Near-Optimal Disjoint-Path Facility Location Through Set Cover by Pairs," Operations Research, INFORMS, vol. 68(3), pages 896-926, May.
    10. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    11. Raghavan, S. & Sahin, Mustafa & Salman, F. Sibel, 2019. "The capacitated mobile facility location problem," European Journal of Operational Research, Elsevier, vol. 277(2), pages 507-520.
    12. Yu, Guodong & Zhang, Jie, 2018. "Multi-dual decomposition solution for risk-averse facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 70-89.
    13. Wenxuan Shan & Qianqian Yan & Chao Chen & Mengjie Zhang & Baozhen Yao & Xuemei Fu, 2019. "Optimization of competitive facility location for chain stores," Annals of Operations Research, Springer, vol. 273(1), pages 187-205, February.
    14. Riccardo Giusti & Chiara Iorfida & Yuanyuan Li & Daniele Manerba & Stefano Musso & Guido Perboli & Roberto Tadei & Shuai Yuan, 2019. "Sustainable and De-Stressed International Supply-Chains Through the SYNCHRO-NET Approach," Sustainability, MDPI, vol. 11(4), pages 1-26, February.
    15. William Miehle, 1958. "Link-Length Minimization in Networks," Operations Research, INFORMS, vol. 6(2), pages 232-243, April.
    16. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    17. Teodora Dan & Patrice Marcotte, 2019. "Competitive Facility Location with Selfish Users and Queues," Operations Research, INFORMS, vol. 67(2), pages 479-497, March.
    18. Guo, Fang & Yang, Jun & Lu, Jianyi, 2018. "The battery charging station location problem: Impact of users’ range anxiety and distance convenience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 1-18.
    19. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    20. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    21. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.
    22. Lin, Boliang & Liu, Siqi & Lin, Ruixi & Wang, Jiaxi & Sun, Min & Wang, Xiaodong & Liu, Chang & Wu, Jianping & Xiao, Jie, 2019. "The location-allocation model for multi-classification-yard location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 283-308.
    23. Barbaros C. Tansel & Richard L. Francis & Timothy J. Lowe, 1983. "State of the Art---Location on Networks: A Survey. Part I: The p-Center and p-Median Problems," Management Science, INFORMS, vol. 29(4), pages 482-497, April.
    24. Chloe Kim Glaeser & Marshall Fisher & Xuanming Su, 2019. "Optimal Retail Location: Empirical Methodology and Application to Practice," Service Science, INFORMS, vol. 21(1), pages 86-102, January.
    25. Georg Brandstätter & Markus Leitner & Ivana Ljubić, 2020. "Location of Charging Stations in Electric Car Sharing Systems," Transportation Science, INFORMS, vol. 54(5), pages 1408-1438, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludmiła Filina-Dawidowicz & Mariusz Kostrzewski, 2022. "The Complexity of Logistics Services at Transshipment Terminals," Energies, MDPI, vol. 15(4), pages 1-26, February.
    2. Fengying Yan & Ningyu Huang & Yehui Zhang, 2022. "How Can the Layout of Public Service Facilities Be Optimized to Reduce Travel-Related Carbon Emissions? Evidence from Changxing County, China," Land, MDPI, vol. 11(8), pages 1-24, July.
    3. Anton-Sanchez, Laura & Landete, Mercedes & Saldanha-da-Gama, Francisco, 2023. "The discrete p-center location problem with upgrading," Omega, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuchen & Zhang, Jianghua & Yu, Guodong, 2020. "A scenario-based hybrid robust and stochastic approach for joint planning of relief logistics and casualty distribution considering secondary disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    2. Soovin Yoon & Laura A. Albert, 2018. "An expected coverage model with a cutoff priority queue," Health Care Management Science, Springer, vol. 21(4), pages 517-533, December.
    3. Heewon Chea & Hyun Kim & Shih-Lung Shaw & Yongwan Chun, 2022. "Assessing Trauma Center Accessibility for Healthcare Equity Using an Anti-Covering Approach," IJERPH, MDPI, vol. 19(3), pages 1-21, January.
    4. Emad Alzubi & Bernd Noche, 2022. "A Multi-Objective Model to Find the Sustainable Location for Citrus Hub," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    5. Xu, Xianhao & Shen, Yaohan & (Amanda) Chen, Wanying & Gong, Yeming & Wang, Hongwei, 2021. "Data-driven decision and analytics of collection and delivery point location problems for online retailers," Omega, Elsevier, vol. 100(C).
    6. Luo, Weicong & Yao, Jing & Mitchell, Richard & Zhang, Xiaoxiang & Li, Wenqiang, 2022. "Locating emergency medical services to reduce urban-rural inequalities," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    7. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    8. Lei He & Ziang Xie, 2022. "Optimization of Urban Shelter Locations Using Bi-Level Multi-Objective Location-Allocation Model," IJERPH, MDPI, vol. 19(7), pages 1-18, April.
    9. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    10. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    11. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    12. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
    13. Justin Longo & Alan Rodney Dobell, 2018. "The Limits of Policy Analytics: Early Examples and the Emerging Boundary of Possibilities," Politics and Governance, Cogitatio Press, vol. 6(4), pages 5-17.
    14. Jinghong Shen & Jianquan Cheng & Wencong Huang & Fantao Zeng, 2020. "An Exploration of Spatial and Social Inequalities of Urban Sports Facilities in Nanning City, China," Sustainability, MDPI, vol. 12(11), pages 1-19, May.
    15. Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.
    16. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    17. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    18. Ahmed Saleh Al-Matari & Rozita Amiruddin & Khairul Azman Aziz & Mohammed A. Al-Sharafi, 2022. "The Impact of Dynamic Accounting Information System on Organizational Resilience: The Mediating Role of Business Processes Capabilities," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    19. Feng Sun & Jinhe Zhang & Jingxuan Ma & Chang Wang & Senlin Hu & Dong Xu, 2021. "Evolution of the Spatial-Temporal Pattern and Social Performance Evaluation of Community Sports and Fitness Venues in Shanghai," IJERPH, MDPI, vol. 19(1), pages 1-17, December.
    20. Yaw Asiedu & Mark Rempel, 2011. "A multiobjective coverage‐based model for Civilian search and rescue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 167-179, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:145:y:2021:i:c:s1366554520308176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.