IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v164y2015i1d10.1007_s10957-014-0586-7.html
   My bibliography  Save this article

Weiszfeld’s Method: Old and New Results

Author

Listed:
  • Amir Beck

    (Technion—Israel Institute of Technology)

  • Shoham Sabach

    (Tel Aviv University)

Abstract

In 1937, the 16-years-old Hungarian mathematician Endre Weiszfeld, in a seminal paper, devised a method for solving the Fermat–Weber location problem—a problem whose origins can be traced back to the seventeenth century. Weiszfeld’s method stirred up an enormous amount of research in the optimization and location communities, and is also being discussed and used till these days. In this paper, we review both the past and the ongoing research on Weiszfed’s method. The existing results are presented in a self-contained and concise manner—some are derived by new and simplified techniques. We also establish two new results using modern tools of optimization. First, we establish a non-asymptotic sublinear rate of convergence of Weiszfeld’s method, and second, using an exact smoothing technique, we present a modification of the method with a proven better rate of convergence.

Suggested Citation

  • Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
  • Handle: RePEc:spr:joptap:v:164:y:2015:i:1:d:10.1007_s10957-014-0586-7
    DOI: 10.1007/s10957-014-0586-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-014-0586-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-014-0586-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. A. Eiselt & Vladimir Marianov, 2011. "Pioneering Developments in Location Analysis," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Foundations of Location Analysis, chapter 0, pages 3-22, Springer.
    2. Yaakov S. Kupitz & Horst Martini & Margarita Spirova, 2013. "The Fermat–Torricelli Problem, Part I: A Discrete Gradient-Method Approach," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 305-327, August.
    3. Leon Cooper, 1963. "Location-Allocation Problems," Operations Research, INFORMS, vol. 11(3), pages 331-343, June.
    4. E. Weiszfeld & Frank Plastria, 2009. "On the point for which the sum of the distances to n given points is minimum," Annals of Operations Research, Springer, vol. 167(1), pages 7-41, March.
    5. Lawrence M. Ostresh, 1978. "On the Convergence of a Class of Iterative Methods for Solving the Weber Location Problem," Operations Research, INFORMS, vol. 26(4), pages 597-609, August.
    6. William Miehle, 1958. "Link-Length Minimization in Networks," Operations Research, INFORMS, vol. 6(2), pages 232-243, April.
    7. NESTEROV, Yu., 2005. "Smooth minimization of non-smooth functions," LIDAM Reprints CORE 1819, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. James G. Morris, 1981. "Convergence of the Weiszfeld Algorithm for Weber Problems Using a Generalized “Distance” Function," Operations Research, INFORMS, vol. 29(1), pages 37-48, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Görner & Christian Kanzow, 2016. "On Newton’s Method for the Fermat–Weber Location Problem," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 107-118, July.
    2. Johannes von Lindheim, 2023. "Simple approximative algorithms for free-support Wasserstein barycenters," Computational Optimization and Applications, Springer, vol. 85(1), pages 213-246, May.
    3. Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.
    2. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.
    3. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    4. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    5. Jing Yao & Alan T. Murray, 2014. "Serving regional demand in facility location," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 643-662, August.
    6. Zvi Drezner, 2009. "On the convergence of the generalized Weiszfeld algorithm," Annals of Operations Research, Springer, vol. 167(1), pages 327-336, March.
    7. Pey-Chun Chen & Pierre Hansen & Brigitte Jaumard & Hoang Tuy, 1998. "Solution of the Multisource Weber and Conditional Weber Problems by D.-C. Programming," Operations Research, INFORMS, vol. 46(4), pages 548-562, August.
    8. Richard L. Church & Zvi Drezner & Pawel Kalczynski, 2023. "Extensions to the planar p-median problem," Annals of Operations Research, Springer, vol. 326(1), pages 115-135, July.
    9. Victor Blanco & Justo Puerto & Safae El Haj Ben Ali, 2014. "Revisiting several problems and algorithms in continuous location with $$\ell _\tau $$ ℓ τ norms," Computational Optimization and Applications, Springer, vol. 58(3), pages 563-595, July.
    10. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    11. Rodríguez-Chía, Antonio M. & Espejo, Inmaculada & Drezner, Zvi, 2010. "On solving the planar k-centrum problem with Euclidean distances," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1169-1186, December.
    12. Carrizosa, Emilio & Rodriguez-Chia, Antonio M., 1997. "Weber problems with alternative transportation systems," European Journal of Operational Research, Elsevier, vol. 97(1), pages 87-93, February.
    13. Pawel Kalczynski & Jack Brimberg & Zvi Drezner, 2022. "Less is more: discrete starting solutions in the planar p-median problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 34-59, April.
    14. Burkard, Rainer E. & Galavii, Mohammadreza & Gassner, Elisabeth, 2010. "The inverse Fermat-Weber problem," European Journal of Operational Research, Elsevier, vol. 206(1), pages 11-17, October.
    15. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    16. Seyed Mohsen Mousavi & Ardeshir Bahreininejad & S. Nurmaya Musa & Farazila Yusof, 2017. "A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 191-206, January.
    17. Yifei Zhao & Stein W. Wallace, 2016. "Appraising redundancy in facility layout," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 665-679, February.
    18. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    19. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Frank Plastria & Tom Blockmans, 2015. "Multidimensional Theoretic Consensus Reachability: The Impact of Distance Selection and Issue Saliences," Group Decision and Negotiation, Springer, vol. 24(1), pages 1-44, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:164:y:2015:i:1:d:10.1007_s10957-014-0586-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.