IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v122y2019icp115-139.html
   My bibliography  Save this article

Planning facility location under generally correlated facility disruptions: Use of supporting stations and quasi-probabilities

Author

Listed:
  • Xie, Siyang
  • An, Kun
  • Ouyang, Yanfeng

Abstract

Many real-world service facilities are subject to probabilistic disruptions. Such disruptions often exhibit correlations that arise from shared external hazards or direct interactions among these facilities. This paper builds an overarching methodological framework for reliable facility location design under correlated facility disruptions. We first incorporate and extend the concepts of supporting station structure and quasi-probability from Li et al. (2013) and Xie et al. (2015), such that any correlated facility disruptions (positive and/or negative) can be equivalently represented by independent failures of a layer of properly constructed supporting stations, which are virtually added to the original facility system for capturing the effect of correlations among facilities. We then develop a compact mixed-integer mathematical model to optimize the facility location and customer assignment decisions in order to strike a balance between system reliability and cost efficiency. Lagrangian relaxation based algorithms, including modules for obtaining upper bound and lower bounds of relaxed subproblems, are proposed to effectively solve the optimization model. Numerical case studies are carried out to demonstrate the methodology, to test the performance of the framework, and to draw managerial insights.

Suggested Citation

  • Xie, Siyang & An, Kun & Ouyang, Yanfeng, 2019. "Planning facility location under generally correlated facility disruptions: Use of supporting stations and quasi-probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 115-139.
  • Handle: RePEc:eee:transb:v:122:y:2019:i:c:p:115-139
    DOI: 10.1016/j.trb.2019.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518302467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    2. Li, Xiaopeng & Ouyang, Yanfeng & Peng, Fan, 2013. "A supporting station model for reliable infrastructure location design under interdependent disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 80-93.
    3. Scaparra, Maria P. & Church, Richard L., 2008. "An exact solution approach for the interdiction median problem with fortification," European Journal of Operational Research, Elsevier, vol. 189(1), pages 76-92, August.
    4. Zhang, Ying & Snyder, Lawrence V. & Qi, Mingyao & Miao, Lixin, 2016. "A heterogeneous reliable location model with risk pooling under supply disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 151-178.
    5. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    6. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.
    7. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    8. Oded Berman & Dmitry Krass & Mozart B. C. Menezes, 2007. "Facility Reliability Issues in Network p -Median Problems: Strategic Centralization and Co-Location Effects," Operations Research, INFORMS, vol. 55(2), pages 332-350, April.
    9. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    10. Xie, Siyang & Ouyang, Yanfeng, 2019. "Reliable service systems design under the risk of network access failures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 1-13.
    11. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    12. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    13. An, Kun & Xie, Siyang & Ouyang, Yanfeng, 2018. "Reliable sensor location for object positioning and surveillance via trilateration," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 956-970.
    14. Mozart Menezes & O. Berman & D. Krass, 2007. "Facility Reliability Issues in Network p-Median Problems: Strategic Centralization and Co-location Effects," Post-Print halshs-00170396, HAL.
    15. Berman, Oded & Krass, Dmitry & Menezes, Mozart B.C., 2013. "Location and reliability problems on a line: Impact of objectives and correlated failures on optimal location patterns," Omega, Elsevier, vol. 41(4), pages 766-779.
    16. Rongbing Huang & Seokjin Kim & Mozart Menezes, 2010. "Facility location for large-scale emergencies," Annals of Operations Research, Springer, vol. 181(1), pages 271-286, December.
    17. Xie, Siyang & Li, Xiaopeng & Ouyang, Yanfeng, 2015. "Decomposition of general facility disruption correlations via augmentation of virtual supporting stations," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 64-81.
    18. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    19. Alper Atamtürk & Gemma Berenguer & Zuo-Jun (Max) Shen, 2012. "A Conic Integer Programming Approach to Stochastic Joint Location-Inventory Problems," Operations Research, INFORMS, vol. 60(2), pages 366-381, April.
    20. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albareda-Sambola, Maria & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2023. "An exact approach for the reliable fixed-charge location problem with capacity constraints," European Journal of Operational Research, Elsevier, vol. 311(1), pages 24-35.
    2. Jiang, Zhoutong & Ouyang, Yanfeng, 2021. "Reliable location of first responder stations for cooperative response to disasters," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 20-32.
    3. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2021. "Robust facility location under demand uncertainty and facility disruptions," Omega, Elsevier, vol. 103(C).
    4. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    5. Zamani, Shokufeh & Arkat, Jamal & Niaki, Seyed Taghi Akhavan, 2022. "Service interruption and customer withdrawal in the congested facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    6. Wang, Zhaodong & Xie, Siyang & Ouyang, Yanfeng, 2022. "Planning reliable service facility location against disruption risks and last-mile congestion in a continuous space," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 123-140.
    7. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Siyang & Ouyang, Yanfeng, 2019. "Reliable service systems design under the risk of network access failures," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 1-13.
    2. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    3. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    4. Zamani, Shokufeh & Arkat, Jamal & Niaki, Seyed Taghi Akhavan, 2022. "Service interruption and customer withdrawal in the congested facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    5. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    6. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    7. Yu, Guodong & Zhang, Jie, 2018. "Multi-dual decomposition solution for risk-averse facility location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 70-89.
    8. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    9. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    10. Wang, Zhaodong & Xie, Siyang & Ouyang, Yanfeng, 2022. "Planning reliable service facility location against disruption risks and last-mile congestion in a continuous space," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 123-140.
    11. An, Shi & Cui, Na & Bai, Yun & Xie, Weijun & Chen, Mingliu & Ouyang, Yanfeng, 2015. "Reliable emergency service facility location under facility disruption, en-route congestion and in-facility queuing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 199-216.
    12. Yun, Lifen & Wang, Xifu & Fan, Hongqiang & Li, Xiaopeng, 2020. "Reliable facility location design with round-trip transportation under imperfect information Part I: A discrete model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    13. Zarrinpoor, Naeme & Fallahnezhad, Mohammad Saber & Pishvaee, Mir Saman, 2018. "The design of a reliable and robust hierarchical health service network using an accelerated Benders decomposition algorithm," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1013-1032.
    14. Jiang, Zhoutong & Ouyang, Yanfeng, 2021. "Reliable location of first responder stations for cooperative response to disasters," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 20-32.
    15. Albareda-Sambola, Maria & Hinojosa, Yolanda & Puerto, Justo, 2015. "The reliable p-median problem with at-facility service," European Journal of Operational Research, Elsevier, vol. 245(3), pages 656-666.
    16. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    17. Albareda-Sambola, Maria & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2017. "Introducing capacities in the location of unreliable facilities," European Journal of Operational Research, Elsevier, vol. 259(1), pages 175-188.
    18. Cui, Jianxun & Zhao, Meng & Li, Xiaopeng & Parsafard, Mohsen & An, Shi, 2016. "Reliable design of an integrated supply chain with expedited shipments under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 143-163.
    19. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
    20. Jamar Kattel, Prakash & Aros-Vera, Felipe, 2020. "Critical infrastructure location under supporting station dependencies considerations," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:122:y:2019:i:c:p:115-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.