Advanced Search
MyIDEAS: Login to save this article or follow this journal

Multi-objective optimization of a road diet network design

Contents:

Author Info

  • Sohn, Keemin
Registered author(s):

    Abstract

    The present study focuses on the development of a model for the optimal design of a road diet plan within a transportation network, and is based on rigorous mathematical models. In most metropolitan areas, there is insufficient road space to dedicate a portion exclusively for cyclists without negatively affecting existing motorists. Thus, it is crucial to find an efficient way to implement a road diet plan that both maximizes the utility for cyclists and minimizes the negative effect on motorists. A network design problem (NDP), which is usually used to find the best option for providing extra road capacity, is adapted here to derive the best solution for limiting road capacity. The resultant NDP for a road diet (NDPRD) takes a bi-level form. The upper-level problem of the NDPRD is established as one of multi-objective optimization. The lower-level problem accommodates user equilibrium (UE) trip assignment with fixed and variable mode-shares. For the fixed mode-share model, the upper-level problem minimizes the total travel time of both cyclists and motorists. For the variable mode-share model, the upper-level problem includes minimization of both the automobile travel share and the average travel time per unit distance for motorists who keep using automobiles after the implementation of a road diet. A multi-objective genetic algorithm (MOGA) is mobilized to solve the proposed problem. The results of a case study, based on a test network, guarantee a robust approximate Pareto optimal front. The possibility that the proposed methodology could be adopted in the design of a road diet plan in a real transportation network is confirmed.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/pii/S0965856411000516
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Transportation Research Part A: Policy and Practice.

    Volume (Year): 45 (2011)
    Issue (Month): 6 (July)
    Pages: 499-511

    as in new window
    Handle: RePEc:eee:transa:v:45:y:2011:i:6:p:499-511

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=547&ref=547_01_ooc_1&version=01

    Related research

    Keywords: Road diet Network design Multi-objective optimization Multi-objective genetic algorithm;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Pas, Eric I. & Principio, Shari L., 1997. "Braess' paradox: Some new insights," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 265-276, June.
    2. Davis, Gary A., 1994. "Exact local solution of the continuous network design problem via stochastic user equilibrium assignment," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 61-75, February.
    3. Chen, Anthony & Subprasom, Kitti, 2007. "Analysis of regulation and policy of private toll roads in a build-operate-transfer scheme under demand uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(6), pages 537-558, July.
    4. Penchina, Claude M., 1997. "Braess paradox: Maximum penalty in a minimal critical network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(5), pages 379-388, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Shrestha, Jagat K. & Benta, Agostinho & Lopes, Rui B. & Lopes, Nuno, 2014. "A multi-objective analysis of a rural road network problem in the hilly regions of Nepal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 43-53.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:45:y:2011:i:6:p:499-511. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.