IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v91y2006i9p992-1007.html
   My bibliography  Save this article

Multi-objective optimization using genetic algorithms: A tutorial

Author

Listed:
  • Konak, Abdullah
  • Coit, David W.
  • Smith, Alice E.

Abstract

Multi-objective formulations are realistic models for many complex engineering optimization problems. In many real-life problems, objectives under consideration conflict with each other, and optimizing a particular solution with respect to a single objective can result in unacceptable results with respect to the other objectives. A reasonable solution to a multi-objective problem is to investigate a set of solutions, each of which satisfies the objectives at an acceptable level without being dominated by any other solution. In this paper, an overview and tutorial is presented describing genetic algorithms (GA) developed specifically for problems with multiple objectives. They differ primarily from traditional GA by using specialized fitness functions and introducing methods to promote solution diversity.

Suggested Citation

  • Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
  • Handle: RePEc:eee:reensy:v:91:y:2006:i:9:p:992-1007
    DOI: 10.1016/j.ress.2005.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832005002012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarker, Ruhul & Liang, Ko-Hsin & Newton, Charles, 2002. "A new multiobjective evolutionary algorithm," European Journal of Operational Research, Elsevier, vol. 140(1), pages 12-23, July.
    2. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choobineh, F. Fred & Mohebbi, Esmail & Khoo, Hansen, 2006. "A multi-objective tabu search for a single-machine scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 175(1), pages 318-337, November.
    2. Shyamal Gondkar & Sivakumar Sreeramagiri & Edwin Zondervan, 2012. "Methodology for Assessment and Optimization of Industrial Eco-Systems," Challenges, MDPI, vol. 3(1), pages 1-21, June.
    3. Tan, K.C. & Goh, C.K. & Yang, Y.J. & Lee, T.H., 2006. "Evolving better population distribution and exploration in evolutionary multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 171(2), pages 463-495, June.
    4. Schweiger, Katharina & Sahamie, Ramin, 2013. "A hybrid Tabu Search approach for the design of a paper recycling network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 98-119.
    5. Jacinto Martín & Concha Bielza & David Ríos Insua, 2005. "Approximating nondominated sets in continuous multiobjective optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 469-480, August.
    6. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    7. Surafel Luleseged Tilahun & Mohamed A. Tawhid, 2019. "Swarm hyperheuristic framework," Journal of Heuristics, Springer, vol. 25(4), pages 809-836, October.
    8. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    9. Frota Neto, J. Quariguasi & Bloemhof-Ruwaard, J.M. & van Nunen, J.A.E.E. & van Heck, E., 2008. "Designing and evaluating sustainable logistics networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 195-208, February.
    10. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    11. Quan, Gang & Greenwood, Garrison W. & Liu, Donglin & Hu, Sharon, 2007. "Searching for multiobjective preventive maintenance schedules: Combining preferences with evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1969-1984, March.
    12. Galinina Anna & Burceva Olga & Parshutin Sergei, 2012. "The Optimization of COCOMO Model Coefficients Using Genetic Algorithms," Information Technology and Management Science, Sciendo, vol. 15(1), pages 45-51, December.
    13. C Alabas-Uslu, 2008. "A self-tuning heuristic for a multi-objective vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(7), pages 988-996, July.
    14. Hernandez, M. & Gómez, T. & Molina, J. & León, M.A. & Caballero, R., 2014. "Efficiency in forest management: A multiobjective harvest scheduling model," Journal of Forest Economics, Elsevier, vol. 20(3), pages 236-251.
    15. Juan Villegas & Fernando Palacios & Andrés Medaglia, 2006. "Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example," Annals of Operations Research, Springer, vol. 147(1), pages 109-141, October.
    16. Selçuklu, Saltuk Buğra & Coit, David W. & Felder, Frank A., 2020. "Pareto uncertainty index for evaluating and comparing solutions for stochastic multiple objective problems," European Journal of Operational Research, Elsevier, vol. 284(2), pages 644-659.
    17. Isada, Yuriko & James, Ross J. W. & Nakagawa, Yuji, 2005. "An approach for solving nonlinear multi-objective separable discrete optimization problem with one constraint," European Journal of Operational Research, Elsevier, vol. 162(2), pages 503-513, April.
    18. Xiaofeng Lv & Deyun Zhou & Yongchuan Tang & Ling Ma, 2018. "An Improved Test Selection Optimization Model Based on Fault Ambiguity Group Isolation and Chaotic Discrete PSO," Complexity, Hindawi, vol. 2018, pages 1-10, January.
    19. Sieja, Marek & Wach, Krzysztof, 2008. "Implementacja algorytmów ewolucyjnych w gospodarce opartej na wiedzy [Implementation of Evolutionary Algorithms in the Knowledge-Based Economy]," MPRA Paper 31620, University Library of Munich, Germany.
    20. Koutras, V.P. & Platis, A.N. & Gravvanis, G.A., 2009. "Optimal server resource reservation policies for priority classes of users under cyclic non-homogeneous markov modeling," European Journal of Operational Research, Elsevier, vol. 198(2), pages 545-556, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:91:y:2006:i:9:p:992-1007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.