IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v147y2006i1p109-14110.1007-s10479-006-0061-4.html
   My bibliography  Save this article

Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example

Author

Listed:
  • Juan Villegas
  • Fernando Palacios
  • Andrés Medaglia

Abstract

The Colombian coffee supply network, managed by the Federación Nacional de Cafeteros de Colombia (Colombian National Coffee-Growers Federation), requires slimming down operational costs while continuing to provide a high level of service in terms of coverage to its affiliated coffee growers. We model this problem as a biobjective (cost-coverage) uncapacitated facility location problem (BOUFLP). We designed and implemented three different algorithms for the BOUFLP that are able to obtain a good approximation of the Pareto frontier. We designed an algorithm based on the Nondominated Sorting Genetic Algorithm; an algorithm based on the Pareto Archive Evolution Strategy; and an algorithm based on mathematical programming. We developed a random problem generator for testing and comparison using as reference the Colombian coffee supply network with 29 depots and 47 purchasing centers. We compared the algorithms based on the quality of the approximation to the Pareto frontier using a nondominated space metric inspired on Zitzler and Thiele's. We used the mathematical programming-based algorithm to identify unique tradeoff opportunities for the reconfiguration of the Colombian coffee supply network. Finally, we illustrate an extension of the mathematical programming-based algorithm to perform scenario analysis for a set of uncapacitated location problems found in the literature. Copyright Springer Science + Business Media, LLC 2006

Suggested Citation

  • Juan Villegas & Fernando Palacios & Andrés Medaglia, 2006. "Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example," Annals of Operations Research, Springer, vol. 147(1), pages 109-141, October.
  • Handle: RePEc:spr:annopr:v:147:y:2006:i:1:p:109-141:10.1007/s10479-006-0061-4
    DOI: 10.1007/s10479-006-0061-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-006-0061-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-006-0061-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Badri, Masood A. & Mortagy, Amr K. & Alsayed, Colonel Ali, 1998. "A multi-objective model for locating fire stations," European Journal of Operational Research, Elsevier, vol. 110(2), pages 243-260, October.
    2. Charles S. Revelle & Gilbert Laporte, 1996. "The Plant Location Problem: New Models and Research Prospects," Operations Research, INFORMS, vol. 44(6), pages 864-874, December.
    3. Marc J. Schniederjans & N. K. Kwak & Mark C. Helmer, 1982. "An Application of Goal Programming to Resolve a Site Location Problem," Interfaces, INFORMS, vol. 12(3), pages 65-72, June.
    4. Margaret L. Brandeau & Samuel S. Chiu, 1989. "An Overview of Representative Problems in Location Research," Management Science, INFORMS, vol. 35(6), pages 645-674, June.
    5. Fernandez, Elena & Puerto, Justo, 2003. "Multiobjective solution of the uncapacitated plant location problem," European Journal of Operational Research, Elsevier, vol. 145(3), pages 509-529, March.
    6. Terry Ross, G. & Soland, Richard M., 1980. "A multicriteria approach to the location of public facilities," European Journal of Operational Research, Elsevier, vol. 4(5), pages 307-321, May.
    7. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    8. Koksalan, Murat & Burak Keha, Ahmet, 2003. "Using genetic algorithms for single-machine bicriteria scheduling problems," European Journal of Operational Research, Elsevier, vol. 145(3), pages 543-556, March.
    9. Marsh, Michael T. & Schilling, David A., 1994. "Equity measurement in facility location analysis: A review and framework," European Journal of Operational Research, Elsevier, vol. 74(1), pages 1-17, April.
    10. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    11. David J. Eaton & Mark S. Daskin & Dennis Simmons & Bill Bulloch & Glen Jansma, 1985. "Determining Emergency Medical Service Vehicle Deployment in Austin, Texas," Interfaces, INFORMS, vol. 15(1), pages 96-108, February.
    12. Osleeb, Jeffrey P. & Ratick, Samuel J., 1983. "A mixed integer and multiple objective programming model to analyze coal handling in New England," European Journal of Operational Research, Elsevier, vol. 12(3), pages 302-313, March.
    13. Jones, D. F. & Mirrazavi, S. K. & Tamiz, M., 2002. "Multi-objective meta-heuristics: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 137(1), pages 1-9, February.
    14. Medaglia, Andres L. & Fang, Shu-Cherng, 2003. "A genetic-based framework for solving (multi-criteria) weighted matching problems," European Journal of Operational Research, Elsevier, vol. 149(1), pages 77-101, August.
    15. Nozick, L. K., 2001. "The fixed charge facility location problem with coverage restrictions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(4), pages 281-296, August.
    16. Zhou, Gengui & Gen, Mitsuo, 1999. "Genetic algorithm approach on multi-criteria minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 114(1), pages 141-152, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arlen Guarín & Andrés Ramírez Hassan & Juan G. Villegas, 2015. "Fast reaction police units in Medellín: A budget-constrained maximal homicide covering location approach," Borradores de Economia 908, Banco de la Republica de Colombia.
    2. Sophie N. Parragh & Fabien Tricoire & Walter J. Gutjahr, 2022. "A branch-and-Benders-cut algorithm for a bi-objective stochastic facility location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 419-459, June.
    3. Shilian Han & Jerry Mendel, 2012. "A new method for managing the uncertainties in evaluating multi-person multi-criteria location choices, using a perceptual computer," Annals of Operations Research, Springer, vol. 195(1), pages 277-309, May.
    4. Paul, Nicholas R. & Lunday, Brian J. & Nurre, Sarah G., 2017. "A multiobjective, maximal conditional covering location problem applied to the relocation of hierarchical emergency response facilities," Omega, Elsevier, vol. 66(PA), pages 147-158.
    5. Mohebalizadehgashti, Fatemeh & Zolfagharinia, Hossein & Amin, Saman Hassanzadeh, 2020. "Designing a green meat supply chain network: A multi-objective approach," International Journal of Production Economics, Elsevier, vol. 219(C), pages 312-327.
    6. José Ruiz-Meza & Jairo R. Montoya-Torres, 2021. "Tourist trip design with heterogeneous preferences, transport mode selection and environmental considerations," Annals of Operations Research, Springer, vol. 305(1), pages 227-249, October.
    7. Ahmad, Firoz & Alnowibet, Khalid A. & Alrasheedi, Adel F. & Adhami, Ahmad Yusuf, 2022. "A multi-objective model for optimizing the socio-economic performance of a pharmaceutical supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    8. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    9. Guillermo Cabrera-Guerrero & Carolina Lagos & Carolina Castañeda & Franklin Johnson & Fernando Paredes & Enrique Cabrera, 2017. "Parameter Tuning for Local-Search-Based Matheuristic Methods," Complexity, Hindawi, vol. 2017, pages 1-15, December.
    10. Harris, Irina & Mumford, Christine L. & Naim, Mohamed M., 2014. "A hybrid multi-objective approach to capacitated facility location with flexible store allocation for green logistics modeling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 66(C), pages 1-22.
    11. Sáez-Aguado, Jesús & Trandafir, Paula Camelia, 2012. "Some heuristic methods for solving p-median problems with a coverage constraint," European Journal of Operational Research, Elsevier, vol. 220(2), pages 320-327.
    12. Halim, Ronald A. & Kwakkel, Jan H. & Tavasszy, Lóránt A., 2016. "A strategic model of port-hinterland freight distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 368-384.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    2. Zuo-Jun Max Shen & Mark S. Daskin, 2005. "Trade-offs Between Customer Service and Cost in Integrated Supply Chain Design," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 188-207, September.
    3. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    5. Batta, Rajan & Lejeune, Miguel & Prasad, Srinivas, 2014. "Public facility location using dispersion, population, and equity criteria," European Journal of Operational Research, Elsevier, vol. 234(3), pages 819-829.
    6. Emel Aktaş & Özay Özaydın & Burçin Bozkaya & Füsun Ülengin & Şule Önsel, 2013. "Optimizing Fire Station Locations for the Istanbul Metropolitan Municipality," Interfaces, INFORMS, vol. 43(3), pages 240-255, May-June.
    7. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    8. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    9. Madadi, AliReza & Kurz, Mary E. & Mason, Scott J. & Taaffe, Kevin M., 2014. "Supply chain design under quality disruptions and tainted materials delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 105-123.
    10. Ana Iannoni & Reinaldo Morabito & Cem Saydam, 2008. "A hypercube queueing model embedded into a genetic algorithm for ambulance deployment on highways," Annals of Operations Research, Springer, vol. 157(1), pages 207-224, January.
    11. Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
    12. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    13. Pokutta, Sebastian & Schmaltz, Christian, 2011. "Managing liquidity: Optimal degree of centralization," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 627-638, March.
    14. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    15. Zhi-Chun Li & Qian Liu, 2020. "Optimal deployment of emergency rescue stations in an urban transportation corridor," Transportation, Springer, vol. 47(1), pages 445-473, February.
    16. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "A bi-objective approach to discrete cost-bottleneck location problems," Annals of Operations Research, Springer, vol. 267(1), pages 179-201, August.
    17. Ramesh Bollapragada & Thomas B. Morawski & Luz E. Pinzon & Steven H. Richman & Raymond Sackett, 2007. "Network Planning of Broadband Wireless Networks," Interfaces, INFORMS, vol. 37(2), pages 143-162, April.
    18. Francis Sourd & Olivier Spanjaard, 2008. "A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 472-484, August.
    19. Cardoso, Teresa & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana & Nickel, Stefan, 2016. "Moving towards an equitable long-term care network: A multi-objective and multi-period planning approach," Omega, Elsevier, vol. 58(C), pages 69-85.
    20. Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:147:y:2006:i:1:p:109-141:10.1007/s10479-006-0061-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.