IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v39y2005i4p367-381.html
   My bibliography  Save this article

A study of on integrated intercity travel demand model

Author

Listed:
  • Yao, Enjian
  • Morikawa, Takayuki

Abstract

It is well reported that induced travel is an important component of travel demand. With improved transportation conditions, short run effects (e.g., route switches, mode switches, changes of destination, and new trip generation) and long term effects (e.g., change in household auto ownership, and spatial reallocation of activities) will be observed. This paper aims to develop an integrated intercity travel demand modelling system suitable for substantial changes in service level. The model utilizes combined estimation across multiple data sources such as SP, RP and aggregate data. This integrated intercity travel demand modelling system is characterized by an explicit intercity travel behavioural framework and its ability to capture induced travel. Intercity travel decisions are represented by a nested model structure, and an accessibility measure is introduced to capture short term induced travel. The paper also sketches a way to estimate induced travel resulting from long term changes (spatial reallocation of activities). As a case study, an integrated model including trip generation, destination choice, mode choice, and route choice is presented for an intercity high speed rail project planned in Japan, and short term induced travel elasticities with respect to travel cost, travel time, and etc. are also presented.

Suggested Citation

  • Yao, Enjian & Morikawa, Takayuki, 2005. "A study of on integrated intercity travel demand model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 367-381, May.
  • Handle: RePEc:eee:transa:v:39:y:2005:i:4:p:367-381
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(04)00116-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noland, Robert B., 2001. "Relationships between highway capacity and induced vehicle travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 47-72, January.
    2. Kitamura, Ryuichi & Fujii, Satoshi & Pas, Eric I., 1997. "Time-use data, analysis and modeling: toward the next generation of transportation planning methodologies," Transport Policy, Elsevier, vol. 4(4), pages 225-235, October.
    3. Robert Noland & William Cowart, 2000. "Analysis of Metropolitan Highway Capacity and the growth in vehicle miles of travel," Transportation, Springer, vol. 27(4), pages 363-390, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaomei Lin & Yusak O. Susilo & Chunfu Shao & Chengxi Liu, 2018. "The Implication of Road Toll Discount for Mode Choice: Intercity Travel during the Chinese Spring Festival Holiday," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    2. Bliemer, Michiel C.J. & Rose, John M. & Hensher, David A., 2009. "Efficient stated choice experiments for estimating nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 19-35, January.
    3. Tho V. Le & Junyi Zhang & Makoto Chikaraishi & Akimasa Fujiwara, 2018. "Influence of introducing high speed railways on intercity travel behavior in Vietnam," Papers 1810.00155, arXiv.org.
    4. Cascetta, Ennio & Coppola, Pierluigi, 2016. "Assessment of schedule-based and frequency-based assignment models for strategic and operational planning of high-speed rail services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 93-108.
    5. Van Acker, Veronique & Kessels, Roselinde & Palhazi Cuervo, Daniel & Lannoo, Steven & Witlox, Frank, 2020. "Preferences for long-distance coach transport: Evidence from a discrete choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 759-779.
    6. Yamaguchi, Hiromichi & Nakayama, Shoichiro, 2020. "Detection of base travel groups with different sensitivities to new high-speed rail services: Non-negative tensor decomposition approach," Transport Policy, Elsevier, vol. 97(C), pages 37-46.
    7. Bera, Reema & Maitra, Bhargab, 2021. "Assessing consumer preferences for Plug-in Hybrid Electric Vehicle (PHEV): An Indian perspective," Research in Transportation Economics, Elsevier, vol. 90(C).
    8. Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
    9. Román, Concepción & Martín, Juan Carlos & Espino, Raquel & Cherchi, Elisabetta & Ortúzar, Juan de Dios & Rizzi, Luis Ignacio & González, Rosa Marina & Amador, Francisco Javier, 2014. "Valuation of travel time savings for intercity travel: The Madrid-Barcelona corridor," Transport Policy, Elsevier, vol. 36(C), pages 105-117.
    10. Li, Xiaowei & Tang, Junqing & Hu, Xiaojiao & Wang, Wei, 2020. "Assessing intercity multimodal choice behavior in a Touristy City: A factor analysis," Journal of Transport Geography, Elsevier, vol. 86(C).
    11. Li, Zhi-Chun & Sheng, Dian, 2016. "Forecasting passenger travel demand for air and high-speed rail integration service: A case study of Beijing-Guangzhou corridor, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 397-410.
    12. Chang-jun Cai & En-jian Yao & Sha-sha Liu & Yong-sheng Zhang & Jun Liu, 2015. "Holiday Destination Choice Behavior Analysis Based on AFC Data of Urban Rail Transit," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-7, February.
    13. Nakagawa, Dai & Hatoko, Masatoshi, 2007. "Reevaluation of Japanese high-speed rail construction: Recent situation of the north corridor Shinkansen and its way to completion," Transport Policy, Elsevier, vol. 14(2), pages 150-164, March.
    14. Jin, Fanglei & An, Kun & Yao, Enjian, 2020. "Mode choice analysis in urban transport with shared battery electric vehicles: A stated-preference case study in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 95-108.
    15. Tho V. Le & Junyi Zhang & Makoto Chikaraishi & Akimasa Fujiwara, 2018. "Influence of High-Speed Railway System on Inter-city Travel Behavior in Vietnam," Papers 1812.04184, arXiv.org.
    16. Carrillo Murillo, David Guillermo & Liedtke, Gernot, 2013. "A model for the formation of colloidal structures in freight transportation: The case of hinterland terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 55-70.
    17. Marti-Henneberg, Jordi, 2015. "Attracting travellers to the high-speed train: a methodology for comparing potential demand between stations," Journal of Transport Geography, Elsevier, vol. 42(C), pages 145-156.
    18. Li, Xun & Gong, Jian & Gao, Baojun & Yuan, Peiwen, 2021. "Impacts of COVID-19 on tourists' destination preferences: Evidence from China," Annals of Tourism Research, Elsevier, vol. 90(C).
    19. Tapiador, Francisco J. & Burckhart, Kerstin & Martí-Henneberg, Jordi, 2009. "Characterizing European high speed train stations using intermodal time and entropy metrics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 197-208, February.
    20. Shi, Yuji & Blainey, Simon & Sun, Chao & Jing, Peng, 2020. "A literature review on accessibility using bibliometric analysis techniques," Journal of Transport Geography, Elsevier, vol. 87(C).
    21. Zhang, Fangni & Graham, Daniel J. & Wong, Mark Siu Chun, 2018. "Quantifying the substitutability and complementarity between high-speed rail and air transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 191-215.
    22. Espinosa-Aranda, José Luis & García-Ródenas, Ricardo & Ramírez-Flores, María del Carmen & López-García, María Luz & Angulo, Eusebio, 2015. "High-speed railway scheduling based on user preferences," European Journal of Operational Research, Elsevier, vol. 246(3), pages 772-786.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    2. Weis, Claude & Axhausen, Kay W., 2009. "Induced travel demand: Evidence from a pseudo panel data based structural equations model," Research in Transportation Economics, Elsevier, vol. 25(1), pages 8-18.
    3. Hsu, Wen-Tai & Zhang, Hongliang, 2014. "The fundamental law of highway congestion revisited: Evidence from national expressways in Japan," Journal of Urban Economics, Elsevier, vol. 81(C), pages 65-76.
    4. Becky P Y Loo, 2003. "Tunnel Traffic and Toll Elasticities in Hong Kong: Some Recent Evidence for International Comparisons," Environment and Planning A, , vol. 35(2), pages 249-276, February.
    5. Piyapong Jiwattanakulpaisarn & Robert Noland & Daniel Graham & John Polak, 2006. "Highway Infrastructure Investment and Regional Employment Growth: Dynamic Panel Regression Analysis," ERSA conference papers ersa06p207, European Regional Science Association.
    6. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    7. Rentziou, Aikaterini & Gkritza, Konstantina & Souleyrette, Reginald R., 2012. "VMT, energy consumption, and GHG emissions forecasting for passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 487-500.
    8. Angarita-Zapata Juan S. & Andrade-Sosa Hugo H. & Parra-Valencia Jorge A., 2016. "Understanding the Structural Complexity of Induced Travel Demand in Decision-Making: A System Dynamics Approach," Organizacija, Sciendo, vol. 49(3), pages 129-143, August.
    9. González, Rosa Marina & Marrero, Gustavo A., 2012. "Induced road traffic in Spanish regions: A dynamic panel data model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 435-445.
    10. Zolnik, Edmund J., 2018. "Effects of additional capacity on vehicle kilometers of travel in the U.S.: Evidence from National Household Travel Surveys," Journal of Transport Geography, Elsevier, vol. 66(C), pages 1-9.
    11. Choo, Sangho & Mokhtarian, Patricia L. & Salomon, Ilan, 2002. "Impacts of Home-Based Telecommuting on Vehicle-Miles Traveled: A Nationwide Time Series Analysis," Institute of Transportation Studies, Working Paper Series qt2gj976x6, Institute of Transportation Studies, UC Davis.
    12. Phil Goodwin & Robert Noland, 2003. "Building new roads really does create extra traffic: a response to Prakash et al," Applied Economics, Taylor & Francis Journals, vol. 35(13), pages 1451-1457.
    13. Su, Qing, 2011. "The effect of population density, road network density, and congestion on household gasoline consumption in U.S. urban areas," Energy Economics, Elsevier, vol. 33(3), pages 445-452, May.
    14. Hymel, Kent, 2019. "If you build it, they will drive: Measuring induced demand for vehicle travel in urban areas," Transport Policy, Elsevier, vol. 76(C), pages 57-66.
    15. Jihye Byun & Sungjin Park & Kitae Jang, 2017. "Rebound Effect or Induced Demand? Analyzing the Compound Dual Effects on VMT in the U.S," Sustainability, MDPI, vol. 9(2), pages 1-10, February.
    16. Kim, Jinwon, 2022. "Does roadwork improve road speed? Evidence from urban freeways in California," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    17. Patricia Mokhtarian & Francisco Samaniego & Robert Shumway & Neil Willits, 2002. "Revisiting the notion of induced traffic through a matched-pairs study," Transportation, Springer, vol. 29(2), pages 193-220, May.
    18. McMullen, B. Starr & Eckstein, Nathan, 2013. "Determinants of VMT in Urban Areas: A Panel Study of 87 U.S. Urban Areas 1982-2009," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 52(3).
    19. Fani Samara & Stergios Tampekis & Stavros Sakellariou & Olga Christopoulou & Athanasios Sfougaris, 2015. "The changes of the natural resources access in the small forestry Mediterranean islands: The case study of Skiathos, Greece," Proceedings of International Academic Conferences 2604418, International Institute of Social and Economic Sciences.
    20. Kitamura, Ryuichi & Yamamoto, Toshiyuki & Fujii, Satoshi, 2003. "The effectiveness of panels in detecting changes in discrete travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 191-206, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:39:y:2005:i:4:p:367-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.