IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v157y2022icp59-77.html
   My bibliography  Save this article

Designing sustainable intermodal freight transportation networks using a controlled rail tariff discounting policy – The Iranian case

Author

Listed:
  • Sina Mohri, Seyed
  • Thompson, Russell

Abstract

Moving freight by intermodal services instead of road services not only saves a large amount of fuel but also improves sustainability. This paper presents a sustainable Intermodal Freight Transportation Network Design Problem (IFTNDP) in which the effectiveness of a new short-term policy, called controlled rail tariff discounting policy, is evaluated. In the IFTNDP, the government locates intermodal hubs and cooperates with rail companies to offer discounted rail tariffs on the rail connections of intermodal routes. Rail companies are allowed to customize the amount of rail tariff discounting for the network’s OD flows and rail connections. In addition, the government compensates the losses that rail companies incur due to offering the rail tariff discounts by the amount that will be collected from fuel savings in the freight transportation system. Hence, the government can boost the utility of intermodal transportation without investing funds to compensate the losses of rail companies. A stated preference model based on a questionnaire is adapted to identify users’ route choice behaviour. Then, the users’ route choice behavior is incorporated into the IFTNDP by a set of constraints, depending on the road and intermodal travelling times and costs. The model is applied to a real freight network and insights made by undertaking sensitivity analyses. The results demonstrate that the controlled rail tariff discounting policy not only increases the contribution of freight intermodal transportation in moving total freight but also enhances government’s profits from fuel savings after compensating rail companies’ losses.

Suggested Citation

  • Sina Mohri, Seyed & Thompson, Russell, 2022. "Designing sustainable intermodal freight transportation networks using a controlled rail tariff discounting policy – The Iranian case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 59-77.
  • Handle: RePEc:eee:transa:v:157:y:2022:i:c:p:59-77
    DOI: 10.1016/j.tra.2022.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096585642200012X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2022.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Larranaga, Ana Margarita & Arellana, Julian & Senna, Luiz Afonso, 2017. "Encouraging intermodality: A stated preference analysis of freight mode choice in Rio Grande do Sul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 202-211.
    2. Limbourg, S. & Jourquin, B., 2009. "Optimal rail-road container terminal locations on the European network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 551-563, July.
    3. Li, Qinglin & Rezaei, Jafar & Tavasszy, Lori & Wiegmans, Bart & Guo, Jingwei & Tang, Yinying & Peng, Qiyuan, 2020. "Customers’ preferences for freight service attributes of China Railway Express," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 225-236.
    4. He, Yan & Wu, Tao & Zhang, Canrong & Liang, Zhe, 2015. "An improved MIP heuristic for the intermodal hub location problem," Omega, Elsevier, vol. 57(PB), pages 203-211.
    5. Arnold, Pierre & Peeters, Dominique & Thomas, Isabelle, 2004. "Modelling a rail/road intermodal transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(3), pages 255-270, May.
    6. Wang, Xinchang & Meng, Qiang, 2017. "Discrete intermodal freight transportation network design with route choice behavior of intermodal operators," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 76-104.
    7. Serper, Elif Zeynep & Alumur, Sibel A., 2016. "The design of capacitated intermodal hub networks with different vehicle types," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 51-65.
    8. Zhang, M. & Janic, M. & Tavasszy, L.A., 2015. "A freight transport optimization model for integrated network, service, and policy design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 61-76.
    9. Rothenbächer, Ann-Kathrin & Drexl, Michael & Irnich, Stefan, 2016. "Branch-and-price-and-cut for a service network design and hub location problem," European Journal of Operational Research, Elsevier, vol. 255(3), pages 935-947.
    10. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    11. Ishfaq, Rafay & Sox, Charles R., 2012. "Design of intermodal logistics networks with hub delays," European Journal of Operational Research, Elsevier, vol. 220(3), pages 629-641.
    12. Ishfaq, Rafay & Sox, Charles R., 2011. "Hub location-allocation in intermodal logistic networks," European Journal of Operational Research, Elsevier, vol. 210(2), pages 213-230, April.
    13. Yang, Kai & Yang, Lixing & Gao, Ziyou, 2016. "Planning and optimization of intermodal hub-and-spoke network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 248-266.
    14. Kumar, Aalok & Anbanandam, Ramesh, 2020. "Evaluating the interrelationships among inhibitors to intermodal railroad freight transport in emerging economies: A multi-stakeholder perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 559-581.
    15. Macharis, Cathy & Van Hoeck, Ellen & Pekin, Ethem & van Lier, Tom, 2010. "A decision analysis framework for intermodal transport: Comparing fuel price increases and the internalisation of external costs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(7), pages 550-561, August.
    16. Johan Woxenius, 2007. "Generic Framework for Transport Network Designs: Applications and Treatment in Intermodal Freight Transport Literature," Transport Reviews, Taylor & Francis Journals, vol. 27(6), pages 733-749, January.
    17. Tadashi Yamada & Bona Frazila Russ & Jun Castro & Eiichi Taniguchi, 2009. "Designing Multimodal Freight Transport Networks: A Heuristic Approach and Applications," Transportation Science, INFORMS, vol. 43(2), pages 129-143, May.
    18. Ghane-Ezabadi, Mohammad & Vergara, Hector A., 2016. "Decomposition approach for integrated intermodal logistics network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 53-69.
    19. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    20. Xiaobin Wu & Lei Cao, 2018. "Using heuristic MCMC method for terminal location planning in intermodal transportation," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 32(4), pages 421-442.
    21. Milorad Vidović & Slobodan Zečević & Milorad Kilibarda & Jelena Vlajić & Nenad Bjelić & Snežana Tadić, 2011. "The p-hub Model with Hub-catchment Areas, Existing Hubs, and Simulation: A Case Study of Serbian Intermodal Terminals," Networks and Spatial Economics, Springer, vol. 11(2), pages 295-314, June.
    22. Ishfaq, Rafay & Sox, Charles R., 2010. "Intermodal logistics: The interplay of financial, operational and service issues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 926-949, November.
    23. Meraklı, Merve & Yaman, Hande, 2016. "Robust intermodal hub location under polyhedral demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 66-85.
    24. Bontekoning, Y. M. & Macharis, C. & Trip, J. J., 2004. "Is a new applied transportation research field emerging?--A review of intermodal rail-truck freight transport literature," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 1-34, January.
    25. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    26. Macharis, C. & Bontekoning, Y. M., 2004. "Opportunities for OR in intermodal freight transport research: A review," European Journal of Operational Research, Elsevier, vol. 153(2), pages 400-416, March.
    27. Reis, Vasco, 2014. "Analysis of mode choice variables in short-distance intermodal freight transport using an agent-based model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 100-120.
    28. Arentze, Theo A. & Molin, Eric J.E., 2013. "Travelers’ preferences in multimodal networks: Design and results of a comprehensive series of choice experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 58(C), pages 15-28.
    29. Racunica, Illia & Wynter, Laura, 2005. "Optimal location of intermodal freight hubs," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 453-477, June.
    30. Kelle, Peter & Song, Jinglu & Jin, Mingzhou & Schneider, Helmut & Claypool, Christopher, 2019. "Evaluation of operational and environmental sustainability tradeoffs in multimodal freight transportation planning," International Journal of Production Economics, Elsevier, vol. 209(C), pages 411-420.
    31. Kreutzberger, Ekki D., 2008. "Distance and time in intermodal goods transport networks in Europe: A generic approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 973-993, August.
    32. Martine Mostert & An Caris & Sabine Limbourg, 2018. "Intermodal network design: a three-mode bi-objective model applied to the case of Belgium," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 397-420, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Dongxu & Peng, Sufan & Lian, Feng & Yang, Zhongzhen, 2023. "Optimization of a Japan-Europe multimodal transportation corridor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    2. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    3. Ghane-Ezabadi, Mohammad & Vergara, Hector A., 2016. "Decomposition approach for integrated intermodal logistics network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 53-69.
    4. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    5. Teye, Collins & Bell, Michael G.H. & Bliemer, Michiel C.J., 2017. "Entropy maximising facility location model for port city intermodal terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 1-16.
    6. Meisel, Frank & Kirschstein, Thomas & Bierwirth, Christian, 2013. "Integrated production and intermodal transportation planning in large scale production–distribution-networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 62-78.
    7. Martine Mostert & An Caris & Sabine Limbourg, 2018. "Intermodal network design: a three-mode bi-objective model applied to the case of Belgium," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 397-420, September.
    8. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    9. Shan, Wenxuan & Peng, Zixuan & Liu, Jiaming & Yao, Baozhen & Yu, Bin, 2020. "An exact algorithm for inland container transportation network design," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 41-82.
    10. Huifang Li & Yin Wang, 2023. "Hierarchical Multimodal Hub Location Problem with Carbon Emissions," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    11. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    12. Shima Taheri & Mohammad Tamannaei, 2023. "Integrated Multi-Level Intermodal Network Design Problem: A Sustainable Approach, Based on Competition of Rail and Road Transportation Systems," Networks and Spatial Economics, Springer, vol. 23(1), pages 1-37, March.
    13. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    14. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    15. Thibault Delbart & Yves Molenbruch & Kris Braekers & An Caris, 2021. "Uncertainty in Intermodal and Synchromodal Transport: Review and Future Research Directions," Sustainability, MDPI, vol. 13(7), pages 1-25, April.
    16. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    17. Sun, Li & Zhao, Lindu & Hou, Jing, 2015. "Optimization of postal express line network under mixed driving pattern of trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 147-169.
    18. Jiahao Zhao & Xiaoning Zhu & Li Wang, 2020. "Study on Scheme of Outbound Railway Container Organization in Rail-Water Intermodal Transportation," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    19. Fateme Fotuhi & Nathan Huynh, 2017. "Reliable Intermodal Freight Network Expansion with Demand Uncertainties and Network Disruptions," Networks and Spatial Economics, Springer, vol. 17(2), pages 405-433, June.
    20. Wang, Xinchang & Meng, Qiang, 2017. "Discrete intermodal freight transportation network design with route choice behavior of intermodal operators," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 76-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:157:y:2022:i:c:p:59-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.