IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v23y2023i1d10.1007_s11067-022-09577-6.html
   My bibliography  Save this article

Integrated Multi-Level Intermodal Network Design Problem: A Sustainable Approach, Based on Competition of Rail and Road Transportation Systems

Author

Listed:
  • Shima Taheri

    (Isfahan University of Technology)

  • Mohammad Tamannaei

    (Isfahan University of Technology)

Abstract

Rail transportation system is a green mode that saves energy and reduces the negative impacts. Integrating road and rail systems, known as intermodal transportation, contributes to a sustainable business environment. In this article, based on a sequential game, an integrated multi-level intermodal network design problem (IMINDP) is addressed. On the upper level, a government as the Stackelberg leader with environmental, economic, and social concerns decides whether or not to establish intermodal terminals and rail corridors, considering budget limitation and minimization of both internal and external costs. On the lower level, freight shippers as the Stackelberg followers decide how to transport their freight shipments through rail, road, and intermodal networks, considering rail accessibility, capacity constraints and internal costs minimization. A mathematical programming model is developed to formulate the shippers’ best response to the decisions adopted by the government. Due to NP-hard nature of the problem, a three-level solution approach, based on the Genetic Algorithm (GA) and novel heuristic indicators, is proposed. An exhaustive enumeration algorithm is presented to achieve the optimal solutions as benchmarks for evaluating the solutions obtained by the proposed solution approach. An experimental analysis based on a real-world case indicates the great efficiency of the proposed solution approach. According to the results, a decrease in available budget of infrastructure construction leads to an increase in total external and internal costs imposed on the government. It is also inferred that external transportation costs internalization, as an effective pricing policy, plays a significant role in the strategic network design decisions.

Suggested Citation

  • Shima Taheri & Mohammad Tamannaei, 2023. "Integrated Multi-Level Intermodal Network Design Problem: A Sustainable Approach, Based on Competition of Rail and Road Transportation Systems," Networks and Spatial Economics, Springer, vol. 23(1), pages 1-37, March.
  • Handle: RePEc:kap:netspa:v:23:y:2023:i:1:d:10.1007_s11067-022-09577-6
    DOI: 10.1007/s11067-022-09577-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-022-09577-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-022-09577-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alumur, Sibel & Kara, Bahar Y., 2008. "Network hub location problems: The state of the art," European Journal of Operational Research, Elsevier, vol. 190(1), pages 1-21, October.
    2. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2009. "The design of single allocation incomplete hub networks," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 936-951, December.
    3. Morton O’Kelly & Henrique Luna & Ricardo Camargo & Gilberto Miranda, 2015. "Hub Location Problems with Price Sensitive Demands," Networks and Spatial Economics, Springer, vol. 15(4), pages 917-945, December.
    4. Demir, Emrah & Huang, Yuan & Scholts, Sebastiaan & Van Woensel, Tom, 2015. "A selected review on the negative externalities of the freight transportation: Modeling and pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 95-114.
    5. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    6. Ghane-Ezabadi, Mohammad & Vergara, Hector A., 2016. "Decomposition approach for integrated intermodal logistics network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 53-69.
    7. Lin, Cheng-Chang & Lee, Shwu-Chiou, 2010. "The competition game on hub network design," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 618-629, May.
    8. Ishfaq, Rafay & Sox, Charles R., 2010. "Intermodal logistics: The interplay of financial, operational and service issues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(6), pages 926-949, November.
    9. Zhang, M. & Janic, M. & Tavasszy, L.A., 2015. "A freight transport optimization model for integrated network, service, and policy design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 61-76.
    10. Meng, Qiang & Wang, Xinchang, 2011. "Intermodal hub-and-spoke network design: Incorporating multiple stakeholders and multi-type containers," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 724-742, May.
    11. Lüer-Villagra, Armin & Marianov, Vladimir, 2013. "A competitive hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 231(3), pages 734-744.
    12. Zhang, Qi & Wang, Wenyuan & Peng, Yun & Zhang, Junyi & Guo, Zijian, 2018. "A game-theoretical model of port competition on intermodal network and pricing strategy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 19-39.
    13. Yang, Kai & Yang, Lixing & Gao, Ziyou, 2016. "Planning and optimization of intermodal hub-and-spoke network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 248-266.
    14. Lin, Cheng-Chang & Lee, Shwu-Chiou, 2018. "Hub network design problem with profit optimization for time-definite LTL freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 104-120.
    15. Hassan Sarhadi & David M. Tulett & Manish Verma, 2022. "A tri-level mixed-integer program for the optimal fortification of a rail intermodal terminal network," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 43(1/2), pages 65-95.
    16. Martine Mostert & An Caris & Sabine Limbourg, 2018. "Intermodal network design: a three-mode bi-objective model applied to the case of Belgium," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 397-420, September.
    17. J.H. Ruan & X.P. Wang & F.T.S. Chan & Y. Shi, 2016. "Optimizing the intermodal transportation of emergency medical supplies using balanced fuzzy clustering," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4368-4386, July.
    18. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "The Dynamic Uncapacitated Hub Location Problem," Transportation Science, INFORMS, vol. 45(1), pages 18-32, February.
    19. Teye, Collins & Bell, Michael GH & Bliemer, Michiel CJ, 2018. "Locating urban and regional container terminals in a competitive environment: An entropy maximising approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 971-985.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    2. Sina Mohri, Seyed & Thompson, Russell, 2022. "Designing sustainable intermodal freight transportation networks using a controlled rail tariff discounting policy – The Iranian case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 59-77.
    3. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    4. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2018. "Exact solution of hub network design problems with profits," European Journal of Operational Research, Elsevier, vol. 266(1), pages 57-71.
    5. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Contreras, Ivan & Cordeau, Jean-François & Vidal-Holguín, Carlos Julio, 2023. "Intermodal hub network design with generalized capacity constraints and non-synchronized train–truck operations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    6. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    7. Taherkhani, Gita & Alumur, Sibel A., 2019. "Profit maximizing hub location problems," Omega, Elsevier, vol. 86(C), pages 1-15.
    8. Erdoğan, Güneş & Battarra, Maria & Rodríguez-Chía, Antonio M., 2022. "The hub location and pricing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1035-1047.
    9. Juanjo Peiró & Ángel Corberán & Rafael Martí & Francisco Saldanha-da-Gama, 2019. "Heuristic Solutions for a Class of Stochastic Uncapacitated p-Hub Median Problems," Transportation Science, INFORMS, vol. 53(4), pages 1126-1149, July.
    10. Alibeyg, Armaghan & Contreras, Ivan & Fernández, Elena, 2016. "Hub network design problems with profits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 40-59.
    11. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    12. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    13. Tsekeris, Theodore, 2016. "Interregional trade network analysis for road freight transport in Greece," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 132-148.
    14. Jian Zhou & Kexin Xu & Yuxiu Zhao & Haoran Zheng & Zhengnan Dong, 2021. "Hub-and-Spoke Logistics Network Considering Pricing and Co-Opetition," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    15. Lin, Cheng-Chang & Lee, Shwu-Chiou, 2018. "Hub network design problem with profit optimization for time-definite LTL freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 104-120.
    16. Joris Wagenaar & Ioannis Fragkos & Rob Zuidwijk, 2021. "Integrated Planning for Multimodal Networks with Disruptions and Customer Service Requirements," Transportation Science, INFORMS, vol. 55(1), pages 196-221, 1-2.
    17. Sun, Li & Zhao, Lindu & Hou, Jing, 2015. "Optimization of postal express line network under mixed driving pattern of trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 147-169.
    18. Neamatian Monemi, Rahimeh & Gelareh, Shahin & Nagih, Anass & Maculan, Nelson & Danach, Kassem, 2021. "Multi-period hub location problem with serial demands: A case study of humanitarian aids distribution in Lebanon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    19. Contreras, Ivan & Fernández, Elena, 2012. "General network design: A unified view of combined location and network design problems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 680-697.
    20. Yang, Kai & Yang, Lixing & Gao, Ziyou, 2016. "Planning and optimization of intermodal hub-and-spoke network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 248-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:23:y:2023:i:1:d:10.1007_s11067-022-09577-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.