IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v89y2014icp26-42.html
   My bibliography  Save this article

Linking a storyline with multiple models: A cross-scale study of the UK power system transition

Author

Listed:
  • Trutnevyte, Evelina
  • Barton, John
  • O'Grady, Áine
  • Ogunkunle, Damiete
  • Pudjianto, Danny
  • Robertson, Elizabeth

Abstract

State-of-the-art scenario exercises in the energy and environment fields argue for combining qualitative storylines with quantitative modelling. This paper proposes an approach for linking a highly detailed storyline with multiple, diverse models. This approach is illustrated through a cross-scale study of the UK power system transition until 2050. The storyline, called Central Co-ordination, is linked with insights from six power system models and two appraisal techniques. First, the storyline is ‘translated’ into harmonised assumptions on power system targets for the models. Then, a new concept called the landscape of models is introduced. This landscape helps to map the key fields of expertise of individual models, including their temporal, spatial and disciplinary foci. The storyline is then assessed based on the cross-scale modelling results. While the storyline is important for transmitting information about governance and the choices of key actors, many targets aspired in it are inconsistent with modelling results. The storyline overestimates demand reduction levels, uptake of marine renewables and irreplaceability of carbon capture and storage. It underestimates the supply–demand balancing challenge, the need for back-up capacity and the role of nuclear power and interconnectors with Europe. Thus, iteratively linking storylines and models is key.

Suggested Citation

  • Trutnevyte, Evelina & Barton, John & O'Grady, Áine & Ogunkunle, Damiete & Pudjianto, Danny & Robertson, Elizabeth, 2014. "Linking a storyline with multiple models: A cross-scale study of the UK power system transition," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 26-42.
  • Handle: RePEc:eee:tefoso:v:89:y:2014:i:c:p:26-42
    DOI: 10.1016/j.techfore.2014.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162514002571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2014.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N/A, 2011. "The UK economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 218(1), pages 3-3, October.
    2. Hammond, Geoffrey P. & Howard, Hayley R. & Jones, Craig I., 2013. "The energy and environmental implications of UK more electric transition pathways: A whole systems perspective," Energy Policy, Elsevier, vol. 52(C), pages 103-116.
    3. Mander, Sarah. L. & Bows, Alice & Anderson, Kevin. L. & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part I: Development of a backcasting methodology with stakeholder participation," Energy Policy, Elsevier, vol. 36(10), pages 3754-3763, October.
    4. Vanessa Schweizer & Brian O’Neill, 2014. "Systematic construction of global socioeconomic pathways using internally consistent element combinations," Climatic Change, Springer, vol. 122(3), pages 431-445, February.
    5. Barnacle, M. & Robertson, E. & Galloway, S. & Barton, J. & Ault, G., 2013. "Modelling generation and infrastructure requirements for transition pathways," Energy Policy, Elsevier, vol. 52(C), pages 60-75.
    6. N/A, 2011. "The UK economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 216(1), pages 3-3, April.
    7. Neil Strachan & Will Usher, 2012. "Failure to achieve stringent carbon reduction targets in a second-best policy world," Climatic Change, Springer, vol. 113(2), pages 121-139, July.
    8. McJeon, Haewon C. & Clarke, Leon & Kyle, Page & Wise, Marshall & Hackbarth, Andrew & Bryant, Benjamin P. & Lempert, Robert J., 2011. "Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios?," Energy Economics, Elsevier, vol. 33(4), pages 619-631, July.
    9. Trutnevyte, Evelina & Stauffacher, Michael & Scholz, Roland W., 2012. "Linking stakeholder visions with resource allocation scenarios and multi-criteria assessment," European Journal of Operational Research, Elsevier, vol. 219(3), pages 762-772.
    10. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    11. Anderson, Kevin L. & Mander, Sarah L. & Bows, Alice & Shackley, Simon & Agnolucci, Paolo & Ekins, Paul, 2008. "The Tyndall decarbonisation scenarios--Part II: Scenarios for a 60% CO2 reduction in the UK," Energy Policy, Elsevier, vol. 36(10), pages 3764-3773, October.
    12. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    13. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(3), pages 243-243, December.
    14. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    15. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    16. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    17. Barton, John & Huang, Sikai & Infield, David & Leach, Matthew & Ogunkunle, Damiete & Torriti, Jacopo & Thomson, Murray, 2013. "The evolution of electricity demand and the role for demand side participation, in buildings and transport," Energy Policy, Elsevier, vol. 52(C), pages 85-102.
    18. Paul Ekins & Gabrial Anandarajah & Neil Strachan, 2011. "Towards a low-carbon economy: scenarios and policies for the UK," Climate Policy, Taylor & Francis Journals, vol. 11(2), pages 865-882, March.
    19. Bowman, Gary & MacKay, R. Bradley & Masrani, Swapnesh & McKiernan, Peter, 2013. "Storytelling and the scenario process: Understanding success and failure," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 735-748.
    20. Hughes, Nick, 2013. "Towards improving the relevance of scenarios for public policy questions: A proposed methodological framework for policy relevant low carbon scenarios," Technological Forecasting and Social Change, Elsevier, vol. 80(4), pages 687-698.
    21. John P. Weyant, Francisco C. de la Chesnaye, and Geoff J. Blanford, 2006. "Overview of EMF-21: Multigas Mitigation and Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-32.
    22. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(2), pages 129-130, November.
    23. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    24. Boston, Andy, 2013. "Delivering a secure electricity supply on a low carbon pathway," Energy Policy, Elsevier, vol. 52(C), pages 55-59.
    25. Strachan, Neil & Pye, Steve & Kannan, Ramachandran, 2009. "The iterative contribution and relevance of modelling to UK energy policy," Energy Policy, Elsevier, vol. 37(3), pages 850-860, March.
    26. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    27. Trutnevyte, Evelina, 2013. "EXPANSE methodology for evaluating the economic potential of renewable energy from an energy mix perspective," Applied Energy, Elsevier, vol. 111(C), pages 593-601.
    28. DeCanio, Stephen J, 1998. "The efficiency paradox: bureaucratic and organizational barriers to profitable energy-saving investments," Energy Policy, Elsevier, vol. 26(5), pages 441-454, April.
    29. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    30. Trutnevyte, Evelina & Stauffacher, Michael & Scholz, Roland W., 2011. "Supporting energy initiatives in small communities by linking visions with energy scenarios and multi-criteria assessment," Energy Policy, Elsevier, vol. 39(12), pages 7884-7895.
    31. Morgan,Mary S., 2012. "The World in the Model," Cambridge Books, Cambridge University Press, number 9781107002975.
    32. Morgan,Mary S., 2012. "The World in the Model," Cambridge Books, Cambridge University Press, number 9780521176194.
    33. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    34. Neil Strachan & Tim Foxon & Junichi Fujino, 2008. "Low-Carbon Society (LCS) modelling," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 3-4, December.
    35. Neil Strachan & Tim Foxon & Junichi Fujino, 2008. "Policy implications from the Low-Carbon Society (LCS) modelling project," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 17-29, December.
    36. Hughes, Nick & Strachan, Neil, 2010. "Methodological review of UK and international low carbon scenarios," Energy Policy, Elsevier, vol. 38(10), pages 6056-6065, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trutnevyte, Evelina & Strachan, Neil & Dodds, Paul E. & Pudjianto, Danny & Strbac, Goran, 2015. "Synergies and trade-offs between governance and costs in electricity system transition," Energy Policy, Elsevier, vol. 85(C), pages 170-181.
    2. Trutnevyte, Evelina & McDowall, Will & Tomei, Julia & Keppo, Ilkka, 2016. "Energy scenario choices: Insights from a retrospective review of UK energy futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 326-337.
    3. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    4. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    5. Mier, Mathias & Siala, Kais & Govorukha, Kristina & Mayer, Philip, 2023. "Collaboration, decarbonization, and distributional effects," Applied Energy, Elsevier, vol. 341(C).
    6. Trutnevyte, Evelina, 2016. "Does cost optimization approximate the real-world energy transition?," Energy, Elsevier, vol. 106(C), pages 182-193.
    7. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    8. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    9. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    10. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    11. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    12. Roberts, Simon H. & Foran, Barney D. & Axon, Colin J. & Warr, Benjamin S. & Goddard, Nigel H., 2018. "Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom," Applied Energy, Elsevier, vol. 228(C), pages 409-425.
    13. Céline Guivarch & Julie Rozenberg & Vanessa Schweizer, 2016. "The diversity of socio-economic pathways and CO2 emissions scenarios: Insights from the investigation of a scenarios database," Post-Print halshs-01292901, HAL.
    14. Turnheim, Bruno & Nykvist, Björn, 2019. "Opening up the feasibility of sustainability transitions pathways (STPs): Representations, potentials, and conditions," Research Policy, Elsevier, vol. 48(3), pages 775-788.
    15. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    16. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    17. Sferra, Fabio & Krapp, Mario & Roming, Niklas & Schaeffer, Michiel & Malik, Aman & Hare, Bill & Brecha, Robert, 2019. "Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study," Energy Policy, Elsevier, vol. 133(C).
    18. Sands, Ronald D. & Malcolm, Scott A. & Suttles, Shellye A. & Marshall, Elizabeth, 2017. "Dedicated Energy Crops and Competition for Agricultural Land," Economic Research Report 252445, United States Department of Agriculture, Economic Research Service.
    19. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    20. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:89:y:2014:i:c:p:26-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.