IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v181y2022ics0040162522002876.html
   My bibliography  Save this article

Does higher innovation intensity matter for abating the climate crisis in the presence of economic complexities? Evidence from a Global Panel Data

Author

Listed:
  • Adedoyin, Festus Fatai
  • Erum, Naila
  • Ozturk, Ilhan

Abstract

Industrial development generally entails a structural transition from resource-based and low-technology activities to medium- and high-tech industrial (MHT) activities that represent higher innovation intensity. A modern, highly complex production structure creates better opportunities for skills development and technological innovation. The present study examines the relationship between innovation intensity and climate change crises by incorporating the factor of economic complexities. For this purpose, we used panel data pertaining to 120 global economies from 1996 to 2019 and applied the CS-ARDL estimation technique to achieve empirically valid results. The outcomes of the estimations revealed that real GDP, trade openness, energy use, and economic complexities have a positive and significant relationship with climate change crises in these economies, whereas innovation intensity has a negative and significant relationship with climate change crises. However, the joint effect of the interaction between innovation intensity and real GDP with economic complexities is positive and significant in terms of climate change crises. Thus, the study concludes that higher innovation intensity has a significant role in determining climate change crises in the presence of complex economic structures.

Suggested Citation

  • Adedoyin, Festus Fatai & Erum, Naila & Ozturk, Ilhan, 2022. "Does higher innovation intensity matter for abating the climate crisis in the presence of economic complexities? Evidence from a Global Panel Data," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
  • Handle: RePEc:eee:tefoso:v:181:y:2022:i:c:s0040162522002876
    DOI: 10.1016/j.techfore.2022.121762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522002876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexander Chudik & Kamiar Mohaddes & M. Hashem Pesaran & Mehdi Raissi, 2016. "Long-Run Effects in Large Heterogeneous Panel Data Models with Cross-Sectionally Correlated Errors," Advances in Econometrics, in: Essays in Honor of man Ullah, volume 36, pages 85-135, Emerald Group Publishing Limited.
    2. You, Wanhai & Lv, Zhike, 2018. "Spillover effects of economic globalization on CO2 emissions: A spatial panel approach," Energy Economics, Elsevier, vol. 73(C), pages 248-257.
    3. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    4. Guan, Shu & Cheng, Liwei, 2020. "Does product complexity matter for firms' TFP?," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    5. Dechezlepretre, Antoine & Glachant, Matthieu & Hascic, Ivan & Johnstone, Nick & Meniere, Yann, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Sustainable Development Papers 54361, Fondazione Eni Enrico Mattei (FEEM).
    6. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    7. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 522-528, June.
    8. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    9. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    10. Ali, Murad & Seny Kan, Konan Anderson & Sarstedt, Marko, 2016. "Direct and configurational paths of absorptive capacity and organizational innovation to successful organizational performance," Journal of Business Research, Elsevier, vol. 69(11), pages 5317-5323.
    11. Mohd Shahidan Shaari & Noorazeela Zainol Abidin & Abdul Rahim Ridzuan & Muhammad Saeed Meo, 2021. "The Impacts of Rural Population Growth, Energy use and Economic Growth on CO2 Emissions," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 553-561.
    12. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    13. Asif Razzaq & Arshian Sharif & Paiman Ahmad & Kittisak Jermsittiparsert, 2021. "Asymmetric role of tourism development and technology innovation on carbon dioxide emission reduction in the Chinese economy: Fresh insights from QARDL approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 176-193, January.
    14. Cemalettin Kalayci & P nar Hayaloglu, 2019. "The Impact of Economic Globalization on CO2 Emissions: The Case of NAFTA Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 356-360.
    15. Yasir Khan & Qiu Bin & Taimoor Hassan, 2019. "The impact of climate changes on agriculture export trade in Pakistan: Evidence from time‐series analysis," Growth and Change, Wiley Blackwell, vol. 50(4), pages 1568-1589, December.
    16. Huang, Yongming & Haseeb, Mohammad & Usman, Muhammad & Ozturk, Ilhan, 2022. "Dynamic association between ICT, renewable energy, economic complexity and ecological footprint: Is there any difference between E-7 (developing) and G-7 (developed) countries?," Technology in Society, Elsevier, vol. 68(C).
    17. Pesaran, M. Hashem & Chudik, Alexander, 2014. "Aggregation in large dynamic panels," Journal of Econometrics, Elsevier, vol. 178(P2), pages 273-285.
    18. Abbasi, Kashif Raza & Hussain, Khadim & Haddad, Akram Masoud & Salman, Asma & Ozturk, Ilhan, 2022. "The role of Financial Development and Technological Innovation towards Sustainable Development in Pakistan: Fresh insights from consumption and territory-based emissions," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    19. Robertson, Donald & Symons, James, 2000. "Factor residuals in SUR regressions: estimating panels allowing for cross sectional correlation," LSE Research Online Documents on Economics 20163, London School of Economics and Political Science, LSE Library.
    20. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    21. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 49-62.
    22. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    23. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    24. Pethig, Rudiger, 1976. "Pollution, welfare, and environmental policy in the theory of Comparative Advantage," Journal of Environmental Economics and Management, Elsevier, vol. 2(3), pages 160-169, February.
    25. Ivanova, Inga & Strand, Øivind & Kushnir, Duncan & Leydesdorff, Loet, 2017. "Economic and technological complexity: A model study of indicators of knowledge-based innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 77-89.
    26. Afrifa, Godfred Adjapong & Tingbani, Ishmael & Yamoah, Fred & Appiah, Gloria, 2020. "Innovation input, governance and climate change: Evidence from emerging countries," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    27. Faruk Balli & Gazi Salah Uddin & Syed Jawad Hussain Shahzad, 2019. "Geopolitical risk and tourism demand in emerging economies," Tourism Economics, , vol. 25(6), pages 997-1005, September.
    28. Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad & Ferrer, Román & Kumar, Ronald Ravinesh, 2017. "Tourism-led growth hypothesis in the top ten tourist destinations: New evidence using the quantile-on-quantile approach," Tourism Management, Elsevier, vol. 60(C), pages 223-232.
    29. Shahbaz, Muhammad & Balsalobre-Lorente, Daniel & Sinha, Avik, 2019. "Foreign Direct Investment–CO2 Emissions Nexus in Middle East and North African countries: Importance of Biomass Energy Consumption," MPRA Paper 91729, University Library of Munich, Germany, revised 19 Jan 2019.
    30. Michaël Aklin, 2016. "Re-exploring the Trade and Environment Nexus Through the Diffusion of Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 663-682, August.
    31. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    32. Yann Ménière & Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & N. Johnstone, 2011. "Invention and transfer of climate change mitigation technologies: a study drawing on patent data," Post-Print hal-00869795, HAL.
    33. Bölük, Gülden & Mert, Mehmet, 2014. "Fossil & renewable energy consumption, GHGs (greenhouse gases) and economic growth: Evidence from a panel of EU (European Union) countries," Energy, Elsevier, vol. 74(C), pages 439-446.
    34. Shahbaz, muhammad & Solarin, Sakiru Adebola & Sbia, Rashid & Bibi, Sadia, 2015. "Does Energy Intensity Contribute to CO2 Emissions? A Trivariate Analysis in Selected African Countries," MPRA Paper 64335, University Library of Munich, Germany, revised 19 Mar 2015.
    35. Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "Environmental Kuznets Curve of greenhouse gas emissions including technological progress and substitution effects," Energy, Elsevier, vol. 135(C), pages 237-248.
    36. repec:hal:journl:peer-00796743 is not listed on IDEAS
    37. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "Author Correction: The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 544-544, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shumin Dong & Yuting Xue & Guixiu Ren & Kai Liu, 2022. "Urban Green Innovation Efficiency in China: Spatiotemporal Evolution and Influencing Factors," Land, MDPI, vol. 12(1), pages 1-13, December.
    2. Yunus Emre Kayabas, 2022. "Testing the EKC Hypothesis in terms of Trade Openness, Industrial and Construction Development: Evidences from Northern European and Latin American Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 12(5), pages 319-331, September.
    3. Naeem, Muhammad Abubakr & Appiah, Michael & Karim, Sitara & Yarovaya, Larisa, 2023. "What abates environmental efficiency in African economies? Exploring the influence of infrastructure, industrialization, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    4. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2023. "Asymmetric influence of digital finance, and renewable energy technology innovation on green growth in China," Renewable Energy, Elsevier, vol. 202(C), pages 310-319.
    5. Acheampong, Alex O. & Opoku, Eric Evans Osei & Dogah, Kingsley E., 2023. "The political economy of energy transition: The role of globalization and governance in the adoption of clean cooking fuels and technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Qamar & Yaseen, Muhammad Rizwan & Anwar, Sofia & Makhdum, Muhammad Sohail Amjad & Khan, Muhammad Tariq Iqbal, 2021. "The impact of tourism, renewable energy, and economic growth on ecological footprint and natural resources: A panel data analysis," Resources Policy, Elsevier, vol. 74(C).
    2. Bernardo Caldarola & Dario Mazzilli & Lorenzo Napolitano & Aurelio Patelli & Angelica Sbardella, 2023. "Economic complexity and the sustainability transition: A review of data, methods, and literature," Papers 2308.07172, arXiv.org, revised Mar 2024.
    3. Wang, Jing & Rickman, Dan S. & Yu, Yihua, 2022. "Dynamics between global value chain participation, CO2 emissions, and economic growth: Evidence from a panel vector autoregression model," Energy Economics, Elsevier, vol. 109(C).
    4. Shahzadi, Irum & Yaseen, Muhammad Rizwan & Iqbal Khan, Muhammad Tariq & Amjad Makhdum, Muhammad Sohail & Ali, Qamar, 2022. "The nexus between research and development, renewable energy and environmental quality: Evidence from developed and developing countries," Renewable Energy, Elsevier, vol. 190(C), pages 1089-1099.
    5. Lotfi Mekhzoumi & Nadjoua Harnane & Abdellah Ayachi & Okba Abdellaoui, 2022. "The Environmental Kuznets Curve Hypothesis in Industrialized Countries: A Second Generation Econometric Approach," International Journal of Economics and Financial Issues, Econjournals, vol. 12(2), pages 96-103, March.
    6. Mouna Ben Abdeljelil & Christophe Rault & Fateh Belaïd, 2023. "Economic growth and pollutant emissions: new panel evidence from the union for the Mediterranean countries," Economic Change and Restructuring, Springer, vol. 56(3), pages 1537-1566, June.
    7. Muhammed Ashiq Villanthenkodath & Mohd Arshad Ansari & Muhammad Shahbaz & Xuan Vinh Vo, 2022. "Do tourism development and structural change promote environmental quality? Evidence from India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5163-5194, April.
    8. Sinha, Avik & Gupta, Monika & Shahbaz, Muhammad & Sengupta, Tuhin, 2019. "Impact of Corruption in Public Sector on Environmental Quality: Implications for Sustainability in BRICS and Next 11 Countries," MPRA Paper 94357, University Library of Munich, Germany, revised 05 Jun 2019.
    9. Muhammad Zahid Rafique & Abdul Majeed Nadeem & Wanjun Xia & Majid Ikram & Hafiz Muhammad Shoaib & Umer Shahzad, 2022. "Does economic complexity matter for environmental sustainability? Using ecological footprint as an indicator," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4623-4640, April.
    10. Obiakor, Rowland Tochukwu & Uche, Emmanuel & Das, Narasingha, 2022. "Is structural innovativeness a panacea for healthier environments? Evidence from developing countries," Technology in Society, Elsevier, vol. 70(C).
    11. Massimiliano Mazzanti & Antonio Musolesi, 2011. "Income and time related effects in EKC," Working Papers 201105, University of Ferrara, Department of Economics.
    12. Ulucak, Recep & Danish, & Ozcan, Burcu, 2020. "Relationship between energy consumption and environmental sustainability in OECD countries: The role of natural resources rents," Resources Policy, Elsevier, vol. 69(C).
    13. Fredrick Oteng Agyeman & Ma Zhiqiang & Mingxing Li & Agyemang Kwasi Sampene & Malcom Frimpong Dapaah & Emmanuel Adu Gyamfi Kedjanyi & Paul Buabeng & Yiyao Li & Saifullah Hakro & Mohammad Heydari, 2022. "Probing the Effect of Governance of Tourism Development, Economic Growth, and Foreign Direct Investment on Carbon Dioxide Emissions in Africa: The African Experience," Energies, MDPI, vol. 15(13), pages 1-24, June.
    14. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Sinha, Avik & Gedikli, Ayfer & Hou, Fujun, 2019. "The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries," Resources Policy, Elsevier, vol. 62(C), pages 427-436.
    15. Zhu Weimin & Muhammad Zubair Chishti & Abdul Rehman & Manzoor Ahmad, 2022. "A pathway toward future sustainability: Assessing the influence of innovation shocks on CO2 emissions in developing economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4786-4809, April.
    16. Zheng Fang & Bihong Huang & Zhuoxiang Yang, 2020. "Trade openness and the environmental Kuznets curve: Evidence from Chinese cities," The World Economy, Wiley Blackwell, vol. 43(10), pages 2622-2649, October.
    17. Abdul Majid Awan & Muhammad Azam, 2022. "Evaluating the impact of GDP per capita on environmental degradation for G-20 economies: Does N-shaped environmental Kuznets curve exist?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11103-11126, September.
    18. Massimiliano Mazzanti & Antonio Musolesi, 2010. "Carbon Abatement Leaders and Laggards Non Parametric Analyses of Policy Oriented Kuznets Curves," Working Papers 2010.149, Fondazione Eni Enrico Mattei.
    19. Bakry, Walid & Mallik, Girijasankar & Nghiem, Xuan-Hoa & Sinha, Avik & Vo, Xuan Vinh, 2023. "Is green finance really “green”? Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries," Renewable Energy, Elsevier, vol. 208(C), pages 341-355.
    20. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2022. "Renewable energy and CO2 emissions: New evidence with the panel threshold model," Renewable Energy, Elsevier, vol. 194(C), pages 117-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:181:y:2022:i:c:s0040162522002876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.