IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v179y2022ics0040162522001408.html
   My bibliography  Save this article

Trade openness, economic growth, and energy intensity in China

Author

Listed:
  • Chen, Suisui
  • Zhang, Hongyan
  • Wang, Shuhong

Abstract

The growing demand for energy and the associated pressure of environmental pollution has drawn considerable attention from the Chinese government. Reducing energy intensity in maintaining economic growth has positive implications for China's future green transformation. We systematically examine energy-intensive factors in the context of provincial and regional development in China, at both theoretical and empirical levels. We estimate the energy intensity of 30 provinces and regions in the Chinesemainland from 2005 to 2018 and provide a normative interpretation of the impact of trade openness and economic growth on China's energy intensity using a dynamic panel model. Economic growth and trade openness reduce energy intensity when control variables are included; however, the effect of economic growth on energy intensity is more obvious. Foreign trade affects energy intensity mainly through the export route, while the effect of the import route is not significant. The regional variability of the effect of trade openness and economic growth on energy intensity is insignificant between the east and west of China. Accordingly, to reduce energy intensity and coordinate their development, the government should play an active role in opening trade and economic growth. Additionally, a synergistic mechanism of energy control between provinces and regions is necessary.

Suggested Citation

  • Chen, Suisui & Zhang, Hongyan & Wang, Shuhong, 2022. "Trade openness, economic growth, and energy intensity in China," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:tefoso:v:179:y:2022:i:c:s0040162522001408
    DOI: 10.1016/j.techfore.2022.121608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162522001408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2022.121608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yaqin & Zhao, Guohao & Zhao, Yushan, 2016. "An analysis of Chinese provincial carbon dioxide emission efficiencies based on energy consumption structure," Energy Policy, Elsevier, vol. 96(C), pages 524-533.
    2. Lin, Boqiang & Zhu, Junpeng, 2021. "Impact of China's new-type urbanization on energy intensity: A city-level analysis," Energy Economics, Elsevier, vol. 99(C).
    3. Du, Kerui & Lin, Boqiang, 2015. "Understanding the rapid growth of China's energy consumption: A comprehensive decomposition framework," Energy, Elsevier, vol. 90(P1), pages 570-577.
    4. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    5. Kyophilavong, Phouphet & Shahbaz, Muhammad & Anwar, Sabeen & Masood, Sameen, 2015. "The energy-growth nexus in Thailand: Does trade openness boost up energy consumption?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 265-274.
    6. Adom, Philip Kofi, 2015. "Business cycle and economic-wide energy intensity: The implications for energy conservation policy in Algeria," Energy, Elsevier, vol. 88(C), pages 334-350.
    7. Sbia, Rashid & Shahbaz, Muhammad & Hamdi, Helmi, 2014. "A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE," Economic Modelling, Elsevier, vol. 36(C), pages 191-197.
    8. Guevara, Zeus & Domingos, Tiago, 2017. "Three-level decoupling of energy use in Portugal 1995–2010," Energy Policy, Elsevier, vol. 108(C), pages 134-142.
    9. Zheng, Yingmei & Qi, Jianhong & Chen, Xiaoliang, 2011. "The effect of increasing exports on industrial energy intensity in China," Energy Policy, Elsevier, vol. 39(5), pages 2688-2698, May.
    10. Ju, Keyi & Su, Bin & Zhou, Dequn & Wu, Junmin, 2017. "Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions," Energy Policy, Elsevier, vol. 105(C), pages 108-119.
    11. Díaz, Antonia & Marrero, Gustavo A. & Puch, Luis A. & Rodríguez, Jesús, 2019. "Economic growth, energy intensity and the energy mix," Energy Economics, Elsevier, vol. 81(C), pages 1056-1077.
    12. Yang, Zhenbing & Fan, Meiting & Shao, Shuai & Yang, Lili, 2017. "Does carbon intensity constraint policy improve industrial green production performance in China? A quasi-DID analysis," Energy Economics, Elsevier, vol. 68(C), pages 271-282.
    13. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    14. Li, Yi & Sun, Linyan & Feng, Taiwen & Zhu, Chunyan, 2013. "How to reduce energy intensity in China: A regional comparison perspective," Energy Policy, Elsevier, vol. 61(C), pages 513-522.
    15. Pan, Xiongfeng & Uddin, Md. Kamal & Han, Cuicui & Pan, Xianyou, 2019. "Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh," Energy, Elsevier, vol. 171(C), pages 456-464.
    16. Cole, Matthew A., 2006. "Does trade liberalization increase national energy use?," Economics Letters, Elsevier, vol. 92(1), pages 108-112, July.
    17. Herrerias, M.J. & Cuadros, A. & Orts, V., 2013. "Energy intensity and investment ownership across Chinese provinces," Energy Economics, Elsevier, vol. 36(C), pages 286-298.
    18. Michaël Aklin, 2016. "Re-exploring the Trade and Environment Nexus Through the Diffusion of Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 663-682, August.
    19. Wang, Ying & Chen, Xiangyuan, 2020. "Natural resource endowment and ecological efficiency in China: Revisiting resource curse in the context of ecological efficiency," Resources Policy, Elsevier, vol. 66(C).
    20. Marc J. Melitz, 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica, Econometric Society, vol. 71(6), pages 1695-1725, November.
    21. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    22. Liu, Li-Jing & Creutzig, Felix & Yao, Yun-Fei & Wei, Yi-Ming & Liang, Qiao-Mei, 2020. "Environmental and economic impacts of trade barriers: The example of China–US trade friction," Resource and Energy Economics, Elsevier, vol. 59(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Che, Shuai & Wang, Jun, 2022. "Policy effectiveness of market-oriented energy reform: Experience from China energy-consumption permit trading scheme," Energy, Elsevier, vol. 261(PB).
    2. Mamon Adam Maarof & Dildar Haydar Ahmed & Ahmed Samour, 2023. "Fiscal Policy, Oil Price, Foreign Direct Investment, and Renewable Energy—A Path to Sustainable Development in South Africa," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    3. Zhong, Mei-Rui & Cao, Meng-Yuan & Zou, Han, 2022. "The carbon reduction effect of ICT: A perspective of factor substitution," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    4. Yan Zhang & Jiekuan Zhang, 2023. "Revisiting Tourism Development and Economic Growth: A Framework for Configurational Analysis in Chinese Cities," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    5. Yin, Zi Hui & Zeng, Wei Ping, 2023. "The effects of industrial intelligence on China's energy intensity: The role of technology absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    6. Liu, Pihui & Han, Chuanfeng & Liu, Xinghua & Teng, Minmin, 2023. "Assessing the effect of nonfarm income on the household cooking energy transition in rural China," Energy, Elsevier, vol. 267(C).
    7. Yu Xiang & Jing Zheng & Xunhua Tu, 2022. "The Impact of Intermediate Goods Imports on Energy Efficiency: Empirical Evidence from Chinese Cities," IJERPH, MDPI, vol. 19(20), pages 1-23, October.
    8. Yugang He & Panpan Huang, 2022. "Exploring the Forms of the Economic Effects of Renewable Energy Consumption: Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    9. Suisui Chen & Xintian Liu & Shuhong Wang & Peng Wang, 2023. "Regional Corruption, Foreign Trade, and Environmental Pollution," Sustainability, MDPI, vol. 15(1), pages 1-17, January.
    10. Rui Ding & Tao Zhou & Jian Yin & Yilin Zhang & Siwei Shen & Jun Fu & Linyu Du & Yiming Du & Shihui Chen, 2022. "Does the Urban Agglomeration Policy Reduce Energy Intensity? Evidence from China," IJERPH, MDPI, vol. 19(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Xiongfeng & Uddin, Md. Kamal & Saima, Umme & Jiao, Zhiming & Han, Cuicui, 2019. "How do industrialization and trade openness influence energy intensity? Evidence from a path model in case of Bangladesh," Energy Policy, Elsevier, vol. 133(C).
    2. Yanli Ji & Jie Xue & Zitian Fu, 2022. "Sustainable Development of Economic Growth, Energy-Intensive Industries and Energy Consumption: Empirical Evidence from China’s Provinces," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    3. Wu, Shu & Ding, Song, 2021. "Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector," Energy Economics, Elsevier, vol. 99(C).
    4. Adom, Philip Kofi & Amuakwa-Mensah, Franklin, 2016. "What drives the energy saving role of FDI and industrialization in East Africa?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 925-942.
    5. Huang, Junbing & Du, Dan & Tao, Qizhi, 2017. "An analysis of technological factors and energy intensity in China," Energy Policy, Elsevier, vol. 109(C), pages 1-9.
    6. Liangliang Liu & Wenqing Zhang, 2022. "Vertical fiscal imbalance and energy intensity in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 509-526, October.
    7. Huang, Junbing & Chen, Xiang, 2020. "Domestic R&D activities, technology absorption ability, and energy intensity in China," Energy Policy, Elsevier, vol. 138(C).
    8. Huang, Junbing & Lai, Yali & Hu, Hanlei, 2020. "The effect of technological factors and structural change on China's energy intensity: Evidence from dynamic panel models," China Economic Review, Elsevier, vol. 64(C).
    9. Amuakwa-Mensah, Franklin & Klege, Rebecca A. & Adom, Philip K. & Amoah, Anthony & Hagan, Edmond, 2018. "Unveiling the energy saving role of banking performance in Sub-Sahara Africa," Energy Economics, Elsevier, vol. 74(C), pages 828-842.
    10. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    11. Yang, Zhihao & Hong, Junjie, 2021. "Trade policy uncertainty and energy intensity: Evidence from Chinese industrial firms," Energy Economics, Elsevier, vol. 103(C).
    12. Dong, Kangyin & Sun, Renjin & Hochman, Gal & Li, Hui, 2018. "Energy intensity and energy conservation potential in China: A regional comparison perspective," Energy, Elsevier, vol. 155(C), pages 782-795.
    13. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    14. Adom, Philip Kofi & Adams, Samuel, 2018. "Energy savings in Nigeria. Is there a way of escape from energy inefficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2421-2430.
    15. Zhang, Wenyue & Li, Jianan & Sun, Chuanwang, 2022. "The impact of OFDI reverse technology spillovers on China's energy intensity: Analysis of provincial panel data," Energy Economics, Elsevier, vol. 116(C).
    16. Cergibozan, Raif, 2022. "Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries," Renewable Energy, Elsevier, vol. 183(C), pages 617-626.
    17. Huang, Junbing & Hao, Yu & Lei, Hongyan, 2018. "Indigenous versus foreign innovation and energy intensity in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1721-1729.
    18. Liu, Fei & Zhang, Xudong & Adebayo, Tomiwa Sunday & Awosusi, Abraham Ayobamiji, 2022. "Asymmetric and moderating role of industrialisation and technological innovation on energy intensity: Evidence from BRICS economies," Renewable Energy, Elsevier, vol. 198(C), pages 1364-1372.
    19. Pan, Xiongfeng & Uddin, Md. Kamal & Han, Cuicui & Pan, Xianyou, 2019. "Dynamics of financial development, trade openness, technological innovation and energy intensity: Evidence from Bangladesh," Energy, Elsevier, vol. 171(C), pages 456-464.
    20. Muhlis Can & Zahoor Ahmed, 2023. "Towards sustainable development in the European Union countries: Does economic complexity affect renewable and non‐renewable energy consumption?," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 439-451, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:179:y:2022:i:c:s0040162522001408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.