IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v60y2017icp1-14.html
   My bibliography  Save this article

Incorporating activity space and trip chaining into facility siting for accessibility maximization

Author

Listed:
  • Li, Ran
  • Tong, Daoqin

Abstract

Location models have been widely used to support locational decisions for various service provision. One common objective of location models has been to ensure maximal accessibility of sited facilities to demand populations. Accessibility evaluation in location models often assumes that trips originate from fixed locations (usually home) and are single purpose. These assumptions contradict the empirical evidence that suggests trips also commonly originate from non-home locations and may involve multiple stops. In this study, a new multi-objective location model is developed that extents the classic p-median problem (PMP) to account for a more realistic assessment of accessibility. Based on the individual accessibility assessment, notions of trip chaining and activity space are incorporated into the model development. In addition to fixed home locations, stops along chained trips are allowed for potential service site visits, and activity space is introduced as an additional dimension to evaluate accessibility of alternative opportunities. The effectiveness of the new model is demonstrated using an application in Tucson, AZ.

Suggested Citation

  • Li, Ran & Tong, Daoqin, 2017. "Incorporating activity space and trip chaining into facility siting for accessibility maximization," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 1-14.
  • Handle: RePEc:eee:soceps:v:60:y:2017:i:c:p:1-14
    DOI: 10.1016/j.seps.2017.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012116301215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2017.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    2. Zachary Patterson & Steven Farber, 2015. "Potential Path Areas and Activity Spaces in Application: A Review," Transport Reviews, Taylor & Francis Journals, vol. 35(6), pages 679-700, November.
    3. Kalvenes, Joakim & Kennington, Jeffery & Olinick, Eli, 2005. "Hierarchical cellular network design with channel allocation," European Journal of Operational Research, Elsevier, vol. 160(1), pages 3-18, January.
    4. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    5. Schilling, David A. & Revelle, Charles & Cohon, Jared & Elzinga, D. Jack, 1980. "Some models for fire protection locational decisions," European Journal of Operational Research, Elsevier, vol. 5(1), pages 1-7, July.
    6. David Levinson, 1998. "Accessibility and the Journey to Work," Working Papers 199802, University of Minnesota: Nexus Research Group.
    7. Luke Shillington & Daoqin Tong, 2011. "Maximizing Wireless Mesh Network Coverage," International Regional Science Review, , vol. 34(4), pages 419-437, October.
    8. Nemet, Gregory F. & Bailey, Adrian J., 2000. "Distance and health care utilization among the rural elderly," Social Science & Medicine, Elsevier, vol. 50(9), pages 1197-1208, May.
    9. Luis Miranda-Moreno & Naveen Eluru & Martin Lee-Gosselin & Tyler Kreider, 2012. "Impact of ICT access on personal activity space and greenhouse gas production: evidence from Quebec City, Canada," Transportation, Springer, vol. 39(5), pages 895-918, September.
    10. Syam, Siddhartha S. & Côté, Murray J., 2010. "A location-allocation model for service providers with application to not-for-profit health care organizations," Omega, Elsevier, vol. 38(3-4), pages 157-166, June.
    11. David Wong & Shih-Lung Shaw, 2011. "Measuring segregation: an activity space approach," Journal of Geographical Systems, Springer, vol. 13(2), pages 127-145, June.
    12. Steven Farber & Antonio Páez & Catherine Morency, 2012. "Activity Spaces and the Measurement of Clustering and Exposure: A Case Study of Linguistic Groups in Montreal," Environment and Planning A, , vol. 44(2), pages 315-332, February.
    13. Alan Murray, 2010. "Advances in location modeling: GIS linkages and contributions," Journal of Geographical Systems, Springer, vol. 12(3), pages 335-354, September.
    14. Oded Berman & Rongbing Huang, 2007. "The Minisum Multipurpose Trip Location Problem on Networks," Transportation Science, INFORMS, vol. 41(4), pages 500-515, November.
    15. Nozick, Linda K. & Turnquist, Mark A., 2001. "Inventory, transportation, service quality and the location of distribution centers," European Journal of Operational Research, Elsevier, vol. 129(2), pages 362-371, March.
    16. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    17. John Hodgson, M., 1981. "The location of public facilities intermediate to the journey to work," European Journal of Operational Research, Elsevier, vol. 6(2), pages 199-204, February.
    18. Min, Hokey & Melachrinoudis, Emanuel & Wu, Xing, 1997. "Dynamic expansion and location of an airport: A multiple objective approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(5), pages 403-417, September.
    19. Heckman, Leila B. & Taylor, Howard M., 1969. "School rezoning to achieve racial balance: A linear programming approach," Socio-Economic Planning Sciences, Elsevier, vol. 3(2), pages 127-133, August.
    20. Li, Ran & Tong, Daoqin, 2016. "Constructing human activity spaces: A new approach incorporating complex urban activity-travel," Journal of Transport Geography, Elsevier, vol. 56(C), pages 23-35.
    21. Tong, Daoqin & Ren, Fang & Mack, James, 2012. "Locating farmers’ markets with an incorporation of spatio-temporal variation," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 149-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianov, Vladimir & Eiselt, H.A. & Lüer-Villagra, Armin, 2018. "Effects of multipurpose shopping trips on retail store location in a duopoly," European Journal of Operational Research, Elsevier, vol. 269(2), pages 782-792.
    2. Jianming Le & Kunhui Ye, 2022. "Measuring City-Level Transit Accessibility Based on the Weight of Residential Land Area: A Case of Nanning City, China," Land, MDPI, vol. 11(9), pages 1-17, September.
    3. Josiane Palma Lima & Juliana da Camara Abitante & Nívea Adriana Dias Pons & Clara Moreira Senne, 2019. "A Spatial Fuzzy Multicriteria Analysis of Accessibility: A Case Study in Brazil," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    4. Lüer-Villagra, Armin & Marianov, Vladimir & Eiselt, H.A. & Méndez-Vogel, Gonzalo, 2022. "The leader multipurpose shopping location problem," European Journal of Operational Research, Elsevier, vol. 302(2), pages 470-481.
    5. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin & Eiselt, H.A., 2023. "Store location with multipurpose shopping trips and a new random utility customers’ choice model," European Journal of Operational Research, Elsevier, vol. 305(2), pages 708-721.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliş, Haluk & Tansel, Barbaros & Oğuz, Osman & Güney, Mesut & Kian, Ramez, 2021. "On guarding real terrains: The terrain guarding and the blocking path problems," Omega, Elsevier, vol. 102(C).
    2. Contreras, Ivan & Fernández, Elena & Reinelt, Gerhard, 2012. "Minimizing the maximum travel time in a combined model of facility location and network design," Omega, Elsevier, vol. 40(6), pages 847-860.
    3. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    4. Jing Yao & Alan T. Murray, 2014. "Locational Effectiveness of Clinics Providing Sexual and Reproductive Health Services to Women in Rural Mozambique," International Regional Science Review, , vol. 37(2), pages 172-193, April.
    5. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    6. Kamyar Hasanzadeh & Tiina Laatikainen & Marketta Kyttä, 2018. "A place-based model of local activity spaces: individual place exposure and characteristics," Journal of Geographical Systems, Springer, vol. 20(3), pages 227-252, July.
    7. Sterle, Claudio & Sforza, Antonio & Esposito Amideo, Annunziata, 2016. "Multi-period location of flow intercepting portable facilities of an intelligent transportation system," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 4-13.
    8. Bell, John E. & Griffis, Stanley E. & Cunningham III, William A. & Eberlan, Jon A., 2011. "Location optimization of strategic alert sites for homeland defense," Omega, Elsevier, vol. 39(2), pages 151-158, April.
    9. Murray, Alan T. & Feng, Xin, 2016. "Public street lighting service standard assessment and achievement," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 14-22.
    10. Li, Ran & Tong, Daoqin, 2016. "Constructing human activity spaces: A new approach incorporating complex urban activity-travel," Journal of Transport Geography, Elsevier, vol. 56(C), pages 23-35.
    11. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    12. Murray, Alan T. & Wei, Ran, 2013. "A computational approach for eliminating error in the solution of the location set covering problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 52-64.
    13. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    14. Li Wang & Huan Shi & Lu Gan, 2018. "Healthcare Facility Location-Allocation Optimization for China’s Developing Cities Utilizing a Multi-Objective Decision Support Approach," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    15. Michael J. Brusco, 2022. "Solving Classic Discrete Facility Location Problems Using Excel Spreadsheets," INFORMS Transactions on Education, INFORMS, vol. 22(3), pages 160-171, May.
    16. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    17. Bell, Michael G.H. & Fonzone, Achille & Polyzoni, Chrisanthi, 2014. "Depot location in degradable transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 148-161.
    18. Ross, Anthony & Khajehnezhad, Milad & Otieno, Wilkistar & Aydas, Osman, 2017. "Integrated location-inventory modelling under forward and reverse product flows in the used merchandise retail sector: A multi-echelon formulation," European Journal of Operational Research, Elsevier, vol. 259(2), pages 664-676.
    19. Geroliminis, Nikolas & Kepaptsoglou, Konstantinos & Karlaftis, Matthew G., 2011. "A hybrid hypercube - Genetic algorithm approach for deploying many emergency response mobile units in an urban network," European Journal of Operational Research, Elsevier, vol. 210(2), pages 287-300, April.
    20. Luo, Weicong & Yao, Jing & Mitchell, Richard & Zhang, Xiaoxiang & Li, Wenqiang, 2022. "Locating emergency medical services to reduce urban-rural inequalities," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:60:y:2017:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.