IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v69y2020icp374-388.html
   My bibliography  Save this article

The asymmetric spillover effect of the Markov switching mechanism from the futures market to the spot market

Author

Listed:
  • Chang, Kuang-Liang
  • Lee, Chingnun

Abstract

This article develops a multichain Markov switching dynamic conditional correlation ARCH model with idiosyncratic jump dynamics to investigate whether the state of the crude oil futures market can asymmetrically affect the state of the crude oil spot market. The asymmetric spillover effects are investigated after controlling the dependence structure on idiosyncratic jumps. The empirical findings show an asymmetric spillover effect from the futures market to the spot market. Moreover, the transition probabilities depend highly on the volatility of the futures market, showing the leading role of the futures market. The jump components play a relatively more important role in explaining the conditional variances than do the ARCH and regime-switching effects. Finally, both the contribution of idiosyncratic jumps on total variance and the correlation coefficient between the futures and spot returns rely on the volatility state of the futures and spot returns. The second and fourth moments of the conditional correlation coefficients will be underestimated when the common jumps and/or independent transition mechanisms are ignored. The findings of this paper have important implications for investors in accurately evaluating riskiness, hedgers in improving hedging performance, as well as market participants and government authorities in understanding the lead-lag relationship between crude oil spot and futures markets.

Suggested Citation

  • Chang, Kuang-Liang & Lee, Chingnun, 2020. "The asymmetric spillover effect of the Markov switching mechanism from the futures market to the spot market," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 374-388.
  • Handle: RePEc:eee:reveco:v:69:y:2020:i:c:p:374-388
    DOI: 10.1016/j.iref.2020.06.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056020301416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2020.06.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    2. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    3. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
    4. Mason, Charles F. & A. Wilmot, Neil, 2014. "Jump processes in natural gas markets," Energy Economics, Elsevier, vol. 46(S1), pages 69-79.
    5. Garbade, Kenneth D & Silber, William L, 1983. "Price Movements and Price Discovery in Futures and Cash Markets," The Review of Economics and Statistics, MIT Press, vol. 65(2), pages 289-297, May.
    6. Berry Wilson & Reena Aggarwal & Carla Inclan, 1996. "Detecting volatility changes across the oil sector," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(3), pages 313-330, May.
    7. Shrestha, Keshab, 2014. "Price discovery in energy markets," Energy Economics, Elsevier, vol. 45(C), pages 229-233.
    8. Figuerola-Ferretti, Isabel & Gonzalo, Jesús, 2010. "Modelling and measuring price discovery in commodity markets," Journal of Econometrics, Elsevier, vol. 158(1), pages 95-107, September.
    9. Chen, Pei-Fen & Lee, Chien-Chiang & Zeng, Jhih-Hong, 2014. "The relationship between spot and futures oil prices: Do structural breaks matter?," Energy Economics, Elsevier, vol. 43(C), pages 206-217.
    10. Wai Mun Fong & Kim Hock See, 2003. "Basis variations and regime shifts in the oil futures market," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 499-513.
    11. Lee, Yen-Hsien & Hu, Hsu-Ning & Chiou, Jer-Shiou, 2010. "Jump dynamics with structural breaks for crude oil prices," Energy Economics, Elsevier, vol. 32(2), pages 343-350, March.
    12. Chan Wing Hong, 2008. "Dynamic Hedging with Foreign Currency Futures in the Presence of Jumps," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-25, May.
    13. Alzahrani, Mohammed & Masih, Mansur & Al-Titi, Omar, 2014. "Linear and non-linear Granger causality between oil spot and futures prices: A wavelet based test," Journal of International Money and Finance, Elsevier, vol. 48(PA), pages 175-201.
    14. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    15. Edoardo Otranto, 2005. "The multi-chain Markov switching model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 523-537.
    16. Nikos K. Nomikos & Panos K. Pouliasis, 2015. "Petroleum Term Structure Dynamics and the Role of Regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(2), pages 163-185, February.
    17. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    18. Balcilar, Mehmet & Gungor, Hasan & Hammoudeh, Shawkat, 2015. "The time-varying causality between spot and futures crude oil prices: A regime switching approach," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 51-71.
    19. Bekiros, Stelios D. & Diks, Cees G.H., 2008. "The relationship between crude oil spot and futures prices: Cointegration, linear and nonlinear causality," Energy Economics, Elsevier, vol. 30(5), pages 2673-2685, September.
    20. Silvério, Renan & Szklo, Alexandre, 2012. "The effect of the financial sector on the evolution of oil prices: Analysis of the contribution of the futures market to the price discovery process in the WTI spot market," Energy Economics, Elsevier, vol. 34(6), pages 1799-1808.
    21. Hou, Yang (Greg) & Li, Steven, 2020. "Volatility and skewness spillover between stock index and stock index futures markets during a crash period: New evidence from China," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 166-188.
    22. Lee, Hsiang-Tai, 2009. "Optimal futures hedging under jump switching dynamics," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 446-456, June.
    23. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    24. Wing H. Chan & Denise Young, 2006. "Jumping hedges: An examination of movements in copper spot and futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(2), pages 169-188, February.
    25. Judge, Amrit & Reancharoen, Tipprapa, 2014. "An empirical examination of the lead–lag relationship between spot and futures markets: Evidence from Thailand," Pacific-Basin Finance Journal, Elsevier, vol. 29(C), pages 335-358.
    26. Lee, Chien-Chiang & Zeng, Jhih-Hong, 2011. "Revisiting the relationship between spot and futures oil prices: Evidence from quantile cointegrating regression," Energy Economics, Elsevier, vol. 33(5), pages 924-935, September.
    27. Param Silvapulle & Imad A. Moosa, 1999. "The relationship between spot and futures prices: Evidence from the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(2), pages 175-193, April.
    28. Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
    29. Foster, Andrew J., 1996. "Price discovery in oil markets: a time varying analysis of the 1990-1991 Gulf conflict," Energy Economics, Elsevier, vol. 18(3), pages 231-246, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Dynamic frequency relationships and volatility spillovers in natural gas, crude oil, gas oil, gasoline, and heating oil markets: Implications for portfolio management," Resources Policy, Elsevier, vol. 73(C).
    2. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    2. Chien‐Chiang Lee & Chi‐Chuan Lee & Donald Lien, 2019. "Do country risk and financial uncertainty matter for energy commodity futures?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(3), pages 366-383, March.
    3. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
    4. Kim, Jaeho & Linn, Scott C., 2022. "Price discovery under model uncertainty," Energy Economics, Elsevier, vol. 107(C).
    5. Chen, Pei-Fen & Lee, Chien-Chiang & Zeng, Jhih-Hong, 2014. "The relationship between spot and futures oil prices: Do structural breaks matter?," Energy Economics, Elsevier, vol. 43(C), pages 206-217.
    6. Jena, Sangram Keshari & Tiwari, Aviral Kumar & Hammoudeh, Shawkat & Roubaud, David, 2019. "Distributional predictability between commodity spot and futures: Evidence from nonparametric causality-in-quantiles tests," Energy Economics, Elsevier, vol. 78(C), pages 615-628.
    7. Guglielmo Maria Caporale & Davide Ciferri & Alessandro Girardi, 2014. "Time-Varying Spot and Futures Oil Price Dynamics," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(1), pages 78-97, February.
    8. Figuerola-Ferretti, Isabel & McCrorie, J. Roderick & Paraskevopoulos, Ioannis, 2020. "Mild explosivity in recent crude oil prices," Energy Economics, Elsevier, vol. 87(C).
    9. Xianfang Su & Huiming Zhu & Xinxia Yang, 2019. "Heterogeneous Causal Relationships between Spot and Futures Oil Prices: Evidence from Quantile Causality Analysis," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    10. Arfaoui, Mongi, 2018. "On the spot-futures relationship in crude-refined petroleum prices: New evidence from an ARDL bounds testing approach," Journal of Commodity Markets, Elsevier, vol. 11(C), pages 48-58.
    11. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    12. Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
    13. Josué M. Polanco-Martínez & Luis M. Abadie, 2016. "Analyzing Crude Oil Spot Price Dynamics versus Long Term Future Prices: A Wavelet Analysis Approach," Energies, MDPI, vol. 9(12), pages 1-19, December.
    14. Shao, Ying-Hui & Yang, Yan-Hong & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Time-varying lead–lag structure between the crude oil spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 723-733.
    15. Li, Miao & Xiong, Tao, 2021. "Dynamic price discovery in Chinese agricultural futures markets," Journal of Asian Economics, Elsevier, vol. 76(C).
    16. Silvério, Renan & Szklo, Alexandre, 2012. "The effect of the financial sector on the evolution of oil prices: Analysis of the contribution of the futures market to the price discovery process in the WTI spot market," Energy Economics, Elsevier, vol. 34(6), pages 1799-1808.
    17. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    18. Magkonis, Georgios & Tsouknidis, Dimitris A., 2017. "Dynamic spillover effects across petroleum spot and futures volatilities, trading volume and open interest," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 104-118.
    19. Mert Demir & Terrence F. Martell & Jun Wang, 2019. "The trilogy of China cotton markets: The lead–lag relationship among spot, forward, and futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(4), pages 522-534, April.
    20. Akdoğan, Kurmaş, 2020. "Fundamentals versus speculation in oil market: The role of asymmetries in price adjustment?," Resources Policy, Elsevier, vol. 67(C).

    More about this item

    Keywords

    Idiosyncratic jumps; Multichain Markov switching; Oil futures; Oil price; Spillover effect;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:69:y:2020:i:c:p:374-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.