IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v58y2018icp621-636.html
   My bibliography  Save this article

Analysis of risk premium in UK natural gas futures

Author

Listed:
  • Martínez, Beatriz
  • Torró, Hipòlit

Abstract

In many futures markets, trading is concentrated on the front contract and positions are rolled-over until the strategy horizon is attained. In this paper, a pair-wise comparison between the conventional risk premium and the accrued risk premium in rolled-over positions on the front contract is carried out for UK natural gas futures. Several novel results are obtained. Firstly, and most importantly, the accrued risk premium in rollover strategies is significatively larger than conventional risk premiums and increases with the time to delivery. Specifically, for strategy horizons between three and six months, this difference increases from 1% to 10% (or from 4% to 20% in annualized returns). Secondly, it is the first time that risk premium in day-ahead forwards has been measured in this market. The average value of the day-ahead risk premium is 0.5% per day and it is statistically significant. Thirdly, all risk premiums are significantly larger and more volatile in winter. Finally, risk premium time-variation is analysed using a regression model. It is shown that reservoir shocks, demand shocks and spot price volatility are significant explicative variables and its sign reflects equilibrium models implications for storable commodities.

Suggested Citation

  • Martínez, Beatriz & Torró, Hipòlit, 2018. "Analysis of risk premium in UK natural gas futures," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 621-636.
  • Handle: RePEc:eee:reveco:v:58:y:2018:i:c:p:621-636
    DOI: 10.1016/j.iref.2018.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056016303793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2018.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nahid Movassagh & Bagher Modjtahedi, 2005. "Bias and backwardation in natural gas futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(3), pages 281-308, March.
    2. Giulietti, Monica & Grossi, Luigi & Waterson, Michael, 2011. "A Rough Examination of the value of gas storage," The Warwick Economics Research Paper Series (TWERPS) 967, University of Warwick, Department of Economics.
    3. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    4. Furió, Dolores & Meneu, Vicente, 2010. "Expectations and forward risk premium in the Spanish deregulated power market," Energy Policy, Elsevier, vol. 38(2), pages 784-793, February.
    5. Barbi, Massimiliano & Romagnoli, Silvia, 2018. "Skewness, basis risk, and optimal futures demand," International Review of Economics & Finance, Elsevier, vol. 58(C), pages 14-29.
    6. Schultz, Emma & Swieringa, John, 2013. "Price discovery in European natural gas markets," Energy Policy, Elsevier, vol. 61(C), pages 628-634.
    7. Eugene F. Fama & Kenneth R. French, 2015. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums, and the Theory of Storage," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 4, pages 79-102, World Scientific Publishing Co. Pte. Ltd..
    8. Longstaff, Francis A & Wang, Ashley, 2002. "ELECTRICITY FORWARD PRICES: A High-Frequency Empirical Analysis," University of California at Los Angeles, Anderson Graduate School of Management qt3mw4q41x, Anderson Graduate School of Management, UCLA.
    9. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.
    10. Kolos, Sergey P. & Ronn, Ehud I., 2008. "Estimating the commodity market price of risk for energy prices," Energy Economics, Elsevier, vol. 30(2), pages 621-641, March.
    11. Kao, Chung-Wei & Wan, Jer-Yuh, 2009. "Information transmission and market interactions across the Atlantic -- an empirical study on the natural gas market," Energy Economics, Elsevier, vol. 31(1), pages 152-161, January.
    12. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    13. Mu, Xiaoyi, 2007. "Weather, storage, and natural gas price dynamics: Fundamentals and volatility," Energy Economics, Elsevier, vol. 29(1), pages 46-63, January.
    14. Lucia, Julio J. & Torró, Hipòlit, 2011. "On the risk premium in Nordic electricity futures prices," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 750-763, October.
    15. Cotter, John & Hanly, Jim, 2015. "Performance of utility based hedges," Energy Economics, Elsevier, vol. 49(C), pages 718-726.
    16. Cartea, Álvaro & Williams, Thomas, 2008. "UK gas markets: The market price of risk and applications to multiple interruptible supply contracts," Energy Economics, Elsevier, vol. 30(3), pages 829-846, May.
    17. Hobæk Haff, Ingrid & Lindqvist, Ola & Løland, Anders, 2008. "Risk premium in the UK natural gas forward market," Energy Economics, Elsevier, vol. 30(5), pages 2420-2440, September.
    18. Hiroaki Suenaga & Aaron Smith & Jeffrey Williams, 2008. "Volatility dynamics of NYMEX natural gas futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(5), pages 438-463, May.
    19. Cartea, Álvaro & Villaplana, Pablo, 2008. "Spot price modeling and the valuation of electricity forward contracts: The role of demand and capacity," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2502-2519, December.
    20. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    21. Bogan, Vicki, 2009. "Bubbles or convenience yields? A theoretical explanation with evidence from technology company equity carve-outs," International Review of Economics & Finance, Elsevier, vol. 18(2), pages 248-281, March.
    22. Beck, Stacie E, 1993. "A Rational Expectations Model of Time Varying Risk Premia in Commodities Futures Markets: Theory and Evidence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 34(1), pages 149-168, February.
    23. Kawai, Masahiro, 1983. "Price Volatility of Storable Commodities under Rational Expectations in Spot and Futures Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(2), pages 435-459, June.
    24. Modjtahedi, Bagher & Movassagh, Nahid, 2005. "Natural-gas futures: Bias, predictive performance, and the theory of storage," Energy Economics, Elsevier, vol. 27(4), pages 617-637, July.
    25. Chiou Wei, Song Zan & Zhu, Zhen, 2006. "Commodity convenience yield and risk premium determination: The case of the U.S. natural gas market," Energy Economics, Elsevier, vol. 28(4), pages 523-534, July.
    26. Bryan R. Routledge & Duane J. Seppi & Chester S. Spatt, 2000. "Equilibrium Forward Curves for Commodities," Journal of Finance, American Finance Association, vol. 55(3), pages 1297-1338, June.
    27. Longstaff, Francis & Wang, Ashley, 2002. "Electricity Forward Prices: A High-Frequency Empirical Analysis," University of California at Los Angeles, Anderson Graduate School of Management qt7mh2m2bt, Anderson Graduate School of Management, UCLA.
    28. Patrick Henaff & Ismail Laachir & Francesco Russo, 2013. "Gas storage valuation and hedging. A quantification of the model risk," Papers 1312.3789, arXiv.org.
    29. Marta Szymanowska & Frans Roon & Theo Nijman & Rob Goorbergh, 2014. "An Anatomy of Commodity Futures Risk Premia," Journal of Finance, American Finance Association, vol. 69(1), pages 453-482, February.
    30. Shang, Hua & Yuan, Ping & Huang, Lin, 2016. "Macroeconomic factors and the cross-section of commodity futures returns," International Review of Economics & Finance, Elsevier, vol. 45(C), pages 316-332.
    31. Bessembinder, Hendrik, 1992. "Systematic Risk, Hedging Pressure, and Risk Premiums in Futures Markets," The Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 637-667.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beatriz Martínez & Hipòlit Torró, 2016. "Anatomy of Risk Premium in UK Natural Gas Futures," Working Papers 2016.06, Fondazione Eni Enrico Mattei.
    2. Martínez, Beatriz & Torró, Hipòlit, 2023. "Theory of storage implications in the European natural gas market," Journal of Commodity Markets, Elsevier, vol. 29(C).
    3. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    4. Furió, Dolores & Torró, Hipòlit, 2020. "Optimal hedging under biased energy futures markets," Energy Economics, Elsevier, vol. 88(C).
    5. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    6. Fernandez-Perez, Adrian & Fuertes, Ana-Maria & Miffre, Joelle, 2021. "The risk premia of energy futures," Energy Economics, Elsevier, vol. 102(C).
    7. Bonaldo, Cinzia & Caporin, Massimiliano & Fontini, Fulvio, 2022. "The relationship between day-ahead and future prices in electricity markets: An empirical analysis on Italy, France, Germany, and Switzerland," Energy Economics, Elsevier, vol. 110(C).
    8. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    9. Stronzik, Marcus & Rammerstorfer, Margarethe & Neumann, Anne, 2009. "Does the European natural gas market pass the competitive benchmark of the theory of storage? Indirect tests for three major trading points," Energy Policy, Elsevier, vol. 37(12), pages 5432-5439, December.
    10. Hobæk Haff, Ingrid & Lindqvist, Ola & Løland, Anders, 2008. "Risk premium in the UK natural gas forward market," Energy Economics, Elsevier, vol. 30(5), pages 2420-2440, September.
    11. Bevin-McCrimmon, Fergus & Diaz-Rainey, Ivan & McCarten, Matthew & Sise, Greg, 2018. "Liquidity and risk premia in electricity futures," Energy Economics, Elsevier, vol. 75(C), pages 503-517.
    12. Pietz, Matthäus, 2009. "Risk premia in the German electricity futures market," CEFS Working Paper Series 2009-07, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    13. Modjtahedi, Bagher & Movassagh, Nahid, 2005. "Natural-gas futures: Bias, predictive performance, and the theory of storage," Energy Economics, Elsevier, vol. 27(4), pages 617-637, July.
    14. Jacopo Piana & Daniele Bianchi, 2017. "Expected Spot Prices and the Dynamics of Commodity Risk Premia," 2017 Meeting Papers 1149, Society for Economic Dynamics.
    15. Zhang, Yue & Farnoosh, Arash, 2019. "Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China," Energy Policy, Elsevier, vol. 132(C), pages 678-690.
    16. Longstaff, Francis & Wang, Ashley, 2002. "Electricity Forward Prices: A High-Frequency Empirical Analysis," University of California at Los Angeles, Anderson Graduate School of Management qt7mh2m2bt, Anderson Graduate School of Management, UCLA.
    17. Michelfelder, Richard A. & Pilotte, Eugene A., 2021. "The electricity production cost curve during extreme winter weather," Journal of Economics and Business, Elsevier, vol. 117(C).
    18. Acharya, Viral V. & Lochstoer, Lars A. & Ramadorai, Tarun, 2013. "Limits to arbitrage and hedging: Evidence from commodity markets," Journal of Financial Economics, Elsevier, vol. 109(2), pages 441-465.
    19. Martínez, Beatriz & Torró, Hipòlit, 2018. "Hedging spark spread risk with futures," Energy Policy, Elsevier, vol. 113(C), pages 731-746.
    20. Zhang Yue & Arash Farnoosh, 2018. "Analysing the Dynamic Impact of Electricity Futures on Revenue and Risks of Renewable Energy in China," Working Papers hal-03188814, HAL.

    More about this item

    Keywords

    Natural gas market; Futures premium; Rollover; Seasonal risk premiums;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:58:y:2018:i:c:p:621-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.