IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v101y2023ics0739885923000938.html
   My bibliography  Save this article

How does smart transportation technology promote green total factor productivity? The case of China

Author

Listed:
  • Zhao, Congyu
  • Jia, Rongwen
  • Dong, Kangyin

Abstract

Understanding the role of smart transportation technology in driving China along an efficient development path is crucial; nonetheless, scholars have paid little attention to the pathways toward green total factor productivity through smart transportation technology. Hence, this study aims to assess the level of smart transportation technology, and then investigate its impact on green total factor productivity using the instrumental variable-generalized method of moments (IV-GMM) model. Our main findings are as follows: (1) The primary finding provides solid evidence of the positive impact of smart transportation technology on green total factor productivity, which means smart transportation technology effectively and efficiently accelerates the green development process. (2) The asymmetric nexus between smart transportation technology and green total factor productivity indicates that smart transportation technology plays a more powerful role in areas with lower levels of green total factor productivity despite the fact that a positive relationship exists across all quantiles. (3) The increasing green total factor productivity effect caused by smart transportation technology development is realized through enhanced energy consumption efficiency and industrial structure transition. We propose some suggestions for improving green total factor productivity from the perspective of better smart transportation technology research and application.

Suggested Citation

  • Zhao, Congyu & Jia, Rongwen & Dong, Kangyin, 2023. "How does smart transportation technology promote green total factor productivity? The case of China," Research in Transportation Economics, Elsevier, vol. 101(C).
  • Handle: RePEc:eee:retrec:v:101:y:2023:i:c:s0739885923000938
    DOI: 10.1016/j.retrec.2023.101353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885923000938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2023.101353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2018. "Analysis of green total-factor productivity in China's regional metal industry: A meta-frontier approach," Resources Policy, Elsevier, vol. 58(C), pages 219-229.
    2. Liu, Yang & Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does natural resource abundance affect green total factor productivity in the era of green finance? Global evidence," Resources Policy, Elsevier, vol. 81(C).
    3. Chang, Lei & Taghizadeh-Hesary, Farhad & Mohsin, Muhammad, 2023. "Role of artificial intelligence on green economic development: Joint determinates of natural resources and green total factor productivity," Resources Policy, Elsevier, vol. 82(C).
    4. Khan, Zeeshan & Ali, Shahid & Dong, Kangyin & Li, Rita Yi Man, 2021. "How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital," Energy Economics, Elsevier, vol. 94(C).
    5. Barth, Matthew & Todd, Michael & Shaheen, Susan, 2003. "Intelligent Transportation Technology Elements and Operational Methodologies for Shared-Use Vehicle Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6x12h9sk, Institute of Transportation Studies, UC Berkeley.
    6. Jian Wang & Xuying Yang & Sonia Kumari, 2023. "Investigating the Spatial Spillover Effect of Transportation Infrastructure on Green Total Factor Productivity," Energies, MDPI, vol. 16(6), pages 1-18, March.
    7. Liu, Qingchen & Li, Hongchang & Shang, Wen-long & Wang, Kun, 2022. "Spatio-temporal distribution of Chinese cities’ air quality and the impact of high-speed rail," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Laura Bottazzi & Giovanni Peri, 2007. "The International Dynamics of R&D and Innovation in the Long Run and in The Short Run," Economic Journal, Royal Economic Society, vol. 117(518), pages 486-511, March.
    9. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin & Jiang, Hongdian, 2022. "How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China," Energy Economics, Elsevier, vol. 105(C).
    10. Wang, Kun & Jiang, Changmin & Ng, Adolf K.Y. & Zhu, Zhenran, 2020. "Air and rail connectivity patterns of major city clusters in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 35-53.
    11. Lindsey, Robin & Santos, Georgina, 2020. "Addressing transportation and environmental externalities with economics: Are policy makers listening?," Research in Transportation Economics, Elsevier, vol. 82(C).
    12. Xiao Wang & Jiaojiao Li & Jingming Shi & Jia Li & Jianxu Liu & Songsak Sriboonchitta, 2023. "Does China–Europe Railway Express Improve Green Total Factor Productivity in China?," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    13. Barth, Matthew & Todd, Michael & Shaheen, Susan, 2003. "Intelligent Transportation Technology Elements and Operational Methodologies for Shared-Use Vehicle Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8gg5b8tp, Institute of Transportation Studies, UC Berkeley.
    14. Awan, Ashar & Alnour, Mohammed & Jahanger, Atif & Onwe, Joshua Chukwuma, 2022. "Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector?," Technology in Society, Elsevier, vol. 71(C).
    15. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    16. Tian, Ying & Feng, Chao, 2022. "The internal-structural effects of different types of environmental regulations on China's green total-factor productivity," Energy Economics, Elsevier, vol. 113(C).
    17. Lv, Chengchao & Shao, Changhua & Lee, Chien-Chiang, 2021. "Green technology innovation and financial development: Do environmental regulation and innovation output matter?," Energy Economics, Elsevier, vol. 98(C).
    18. Zhou, Di & Yin, Xiaoshuo & Xie, Dongchun, 2023. "Local governments’ environmental targets and green total factor productivity in Chinese cities," Economic Modelling, Elsevier, vol. 120(C).
    19. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    20. Meng, Ming & Qu, Danlei, 2022. "Understanding the green energy efficiencies of provinces in China: A Super-SBM and GML analysis," Energy, Elsevier, vol. 239(PA).
    21. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    22. Neves, Sónia Almeida & Marques, António Cardoso, 2021. "The substitution of fossil fuels in the US transportation energy mix: Are emissions decoupling from economic growth?," Research in Transportation Economics, Elsevier, vol. 90(C).
    23. Grangeia, Carolina & Santos, Luan & Ferreira, Daniel Viana & Guimarães, Raphael & de Magalhães Ozorio, Luiz & Tavares, Arthur, 2023. "Energy transition scenarios in the transportation sector in Brazil: Contributions from the electrical mobility," Energy Policy, Elsevier, vol. 174(C).
    24. Xia, Fan & Xu, Jintao, 2020. "Green total factor productivity: A re-examination of quality of growth for provinces in China," China Economic Review, Elsevier, vol. 62(C).
    25. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    26. Zhang, Shufan & Zhou, Nan & Feng, Wei & Ma, Minda & Xiang, Xiwang & You, Kairui, 2023. "Pathway for decarbonizing residential building operations in the US and China beyond the mid-century," Applied Energy, Elsevier, vol. 342(C).
    27. Zhang, Yue-Jun & Jiang, Lin & Shi, Wei, 2020. "Exploring the growth-adjusted energy-emission efficiency of transportation industry in China," Energy Economics, Elsevier, vol. 90(C).
    28. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
    29. Jiang, Changmin & D'Alfonso, Tiziana & Wan, Yulai, 2017. "Air-rail cooperation: Partnership level, market structure and welfare implications," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 461-482.
    30. Sun, Yunpeng & Razzaq, Asif & Kizys, Renatas & Bao, Qun, 2022. "High-speed rail and urban green productivity: The mediating role of climatic conditions in China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    31. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2015. "Would competition between air transport and high-speed rail benefit environment and social welfare?," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 118-137.
    32. Ren, Xiaohang & Zeng, Gudian & Dong, Kangyin & Wang, Kun, 2023. "How does high-speed rail affect tourism development? The case of the Sichuan-Chongqing Economic Circle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    33. Yu, Mingchao & Yu, Ran & Tang, Yuxuan & Liu, Zhen, 2020. "Empirical study on the impact of China's metro services on urban transportation energy consumption," Research in Transportation Economics, Elsevier, vol. 80(C).
    34. Jiang, Changmin & Wang, Kun & Wang, Qiang & Yang, Hangjun, 2022. "The Impact of High-Speed Rail Competition on Airline On-Time Performance," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 109-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Kangyin & Yang, Senmiao & Wang, Jianda & Dong, Xiucheng, 2023. "Revisiting energy justice: Is renewable energy technology innovation a tool for realizing a just energy system?," Energy Policy, Elsevier, vol. 183(C).
    2. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "Can low-carbon energy technology lead to energy resource carrying capacity improvement? The case of China," Energy Economics, Elsevier, vol. 127(PA).
    3. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    4. Gao, Chunjiao & Chen, Hongxi, 2023. "Electricity from renewable energy resources: Sustainable energy transition and emissions for developed economies," Utilities Policy, Elsevier, vol. 82(C).
    5. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    6. Li, Jiaman & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "How does natural resource dependence influence carbon emissions? The role of environmental regulation," Resources Policy, Elsevier, vol. 80(C).
    7. Ruomeng Zhou & Yunsheng Zhang, 2023. "Measurement of Urban Green Total Factor Productivity and Analysis of Its Temporal and Spatial Evolution in China," Sustainability, MDPI, vol. 15(12), pages 1-32, June.
    8. Liu, Yang & Zhao, Xiaomeng & Dong, Kangyin & Jiang, Qingzhe, 2023. "Assessing the role of green finance in sustainable energy investments by power utilities: Evidence from China," Utilities Policy, Elsevier, vol. 84(C).
    9. Yang, Senmiao & Wang, Jianda & Dong, Kangyin & Jiang, Qingzhe, 2023. "A path towards China's energy justice: How does digital technology innovation bring about a just revolution?," Energy Economics, Elsevier, vol. 127(PA).
    10. Lei Jiang & Xingyu Chen & Yang Jiang & Bo Zhang, 2023. "Exploring the Direct and Spillover Effects of Aging on Green Total Factor Productivity in China: A Spatial Econometric Approach," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    11. Ma, Lina & Iqbal, Najaf & Bouri, Elie & Zhang, Yang, 2023. "How good is green finance for green innovation? Evidence from the Chinese high-carbon sector," Resources Policy, Elsevier, vol. 85(PB).
    12. Zhang, Shufan & Zhou, Nan & Feng, Wei & Ma, Minda & Xiang, Xiwang & You, Kairui, 2023. "Pathway for decarbonizing residential building operations in the US and China beyond the mid-century," Applied Energy, Elsevier, vol. 342(C).
    13. Lanre Ibrahim, Ridwan & Bello Ajide, Kazeem & Usman, Muhammad & Kousar, Rakhshanda, 2022. "Heterogeneous effects of renewable energy and structural change on environmental pollution in Africa: Do natural resources and environmental technologies reduce pressure on the environment?," Renewable Energy, Elsevier, vol. 200(C), pages 244-256.
    14. Xia, Wenyi & Jiang, Changmin & Wang, Kun & Zhang, Anming, 2019. "Air-rail revenue sharing in a multi-airport system: Effects on traffic and social welfare," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 304-319.
    15. Meng, Zhiyi & Li, Eldon Y. & Qiu, Rui, 2020. "Environmental sustainability with free-floating carsharing services: An on-demand refueling recommendation system for Car2go in Seattle," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    16. Li, Menghan & Zhang, Kaiyue & Alamri, Ahmad Mohammed & Ageli, Mohammed Moosa & Khan, Numan, 2023. "Resource curse hypothesis and sustainable development: Evaluating the role of renewable energy and R&D," Resources Policy, Elsevier, vol. 81(C).
    17. Wang, Zhongbao & Razzaq, Asif, 2022. "Natural resources, energy efficiency transition and sustainable development: Evidence from BRICS economies," Resources Policy, Elsevier, vol. 79(C).
    18. Ding, Yuanyi, 2023. "Does natural resources cause sustainable financial development or resources curse? Evidence from group of seven economies," Resources Policy, Elsevier, vol. 81(C).
    19. Valeria Costantini & Valerio Leone Sciabolazza & Elena Paglialunga, 2023. "Network-driven positive externalities in clean energy technology production: the case of energy efficiency in the EU residential sector," The Journal of Technology Transfer, Springer, vol. 48(2), pages 716-748, April.
    20. Liu, Yang & Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does natural resource abundance affect green total factor productivity in the era of green finance? Global evidence," Resources Policy, Elsevier, vol. 81(C).

    More about this item

    Keywords

    Smart transportation technology; Green total factor productivity; Asymmetric analysis; Mediating effect; China;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
    • P28 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Natural Resources; Environment
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:101:y:2023:i:c:s0739885923000938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.