IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v46y2017i7p1234-1254.html
   My bibliography  Save this article

Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things: An investigation of the M2M/IoT patent network

Author

Listed:
  • Kim, Dong-hyu
  • Lee, Heejin
  • Kwak, Jooyoung

Abstract

While standards are said to create windows of opportunity in facilitation of technological convergence, it is not clear how they affect technological trajectories and strategic choices of firms in the face of convergence and in the process of catch-up. There is little research on the relationship between standards and technological trajectories, particularly in the age of convergence. This paper investigates how standards shape the emerging M2M/IoT technological trajectory and influence convergence in terms of technological importance and diversity. We, firstly, found that standards are a driving force of technological convergence. The second finding is that 3GPP standards assume a crucial role in setting the boundary conditions of the M2M/IoT technological systems. Third, we identified strategic groups and strategic patents that centered around the M2M/IoT trajectory. Forth, standards serve as an important factor in the process of creating a new path for catch-up firms (e.g. Huawei). These findings make contributions to innovation and standards studies by empirically examining the relationship between technological trajectories and standards. Furthermore, they clearly cast light on ongoing cooperation and competition along the M2M/IoT trajectory, and offer practical implications for catch-up strategies.

Suggested Citation

  • Kim, Dong-hyu & Lee, Heejin & Kwak, Jooyoung, 2017. "Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things: An investigation of the M2M/IoT patent network," Research Policy, Elsevier, vol. 46(7), pages 1234-1254.
  • Handle: RePEc:eee:respol:v:46:y:2017:i:7:p:1234-1254
    DOI: 10.1016/j.respol.2017.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733317300835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2017.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    2. Lee, Keun & Lim, Chaisung, 2001. "Technological regimes, catching-up and leapfrogging: findings from the Korean industries," Research Policy, Elsevier, vol. 30(3), pages 459-483, March.
    3. Roberto Fontana & Alessandro Nuvolari & Bart Verspagen, 2009. "Mapping technological trajectories as patent citation networks. An application to data communication standards," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 18(4), pages 311-336.
    4. Kindleberger, Charles P, 1983. "Standards as Public, Collective and Private Goods," Kyklos, Wiley Blackwell, vol. 36(3), pages 377-396.
    5. Gauch, Stephan & Blind, Knut, 2015. "Technological convergence and the absorptive capacity of standardisation," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 236-249.
    6. Kyoo-Ho Park & Keun Lee, 2006. "Linking the technological regime to the technological catch-up: analyzing Korea and Taiwan using the US patent data," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 15(4), pages 715-753, August.
    7. Jacobides, Michael G. & Knudsen, Thorbjorn & Augier, Mie, 2006. "Benefiting from innovation: Value creation, value appropriation and the role of industry architectures," Research Policy, Elsevier, vol. 35(8), pages 1200-1221, October.
    8. Han, Eun Jin & Sohn, So Young, 2016. "Technological convergence in standards for information and communication technologies," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 1-10.
    9. Marc Rysman & Timothy Simcoe, 2008. "Patents and the Performance of Voluntary Standard-Setting Organizations," Management Science, INFORMS, vol. 54(11), pages 1920-1934, November.
    10. Gilsing, Victor & Nooteboom, Bart & Vanhaverbeke, Wim & Duysters, Geert & van den Oord, Ad, 2008. "Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density," Research Policy, Elsevier, vol. 37(10), pages 1717-1731, December.
    11. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    12. Suarez, Fernando F., 2004. "Battles for technological dominance: an integrative framework," Research Policy, Elsevier, vol. 33(2), pages 271-286, March.
    13. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    14. Pieter BALLON, 2009. "The Platformisation of the European Mobile Industry," Communications & Strategies, IDATE, Com&Strat dept., vol. 1(75), pages 15-34, 3rd quart.
    15. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    16. David, Paul A. & Steinmueller, W. Edward, 1994. "Economics of compatibility standards and competition in telecommunication networks," Information Economics and Policy, Elsevier, vol. 6(3-4), pages 217-241, December.
    17. Eun Han & So Sohn, 2015. "Patent valuation based on text mining and survival analysis," The Journal of Technology Transfer, Springer, vol. 40(5), pages 821-839, October.
    18. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    19. Bekkers, Rudi & Bongard, René & Nuvolari, Alessandro, 2011. "An empirical study on the determinants of essential patent claims in compatibility standards," Research Policy, Elsevier, vol. 40(7), pages 1001-1015, September.
    20. Mu, Qing & Lee, Keun, 2005. "Knowledge diffusion, market segmentation and technological catch-up: The case of the telecommunication industry in China," Research Policy, Elsevier, vol. 34(6), pages 759-783, August.
    21. Nelson, Richard R. & Winter, Sidney G., 1993. "In search of useful theory of innovation," Research Policy, Elsevier, vol. 22(2), pages 108-108, April.
    22. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    23. Martinelli, Arianna, 2012. "An emerging paradigm or just another trajectory? Understanding the nature of technological changes using engineering heuristics in the telecommunications switching industry," Research Policy, Elsevier, vol. 41(2), pages 414-429.
    24. Kenney, Martin & Pon, Bryan, 2011. "Structuring the Smartphone Industry. Is the Mobile Internet OS Platform the Key?," Discussion Papers 1238, The Research Institute of the Finnish Economy.
    25. Ta-Shun Cho & Hsin-Yu Shih, 2011. "Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 795-811, December.
    26. Blind, Knut & Thumm, Nikolaus, 2004. "Interrelation between patenting and standardisation strategies: empirical evidence and policy implications," Research Policy, Elsevier, vol. 33(10), pages 1583-1598, December.
    27. Zoo, Hanah & de Vries, Henk J. & Lee, Heejin, 2017. "Interplay of innovation and standardization: Exploring the relevance in developing countries," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 334-348.
    28. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    29. Loet Leydesdorff & Félix Moya-Anegón & Vicente P. Guerrero-Bote, 2015. "Journal maps, interactive overlays, and the measurement of interdisciplinarity on the basis of Scopus data (1996–2012)," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(5), pages 1001-1016, May.
    30. Lee, Keun & Lim, Chaisung & Song, W, 2005. "Emerging Digital Technology as a Window of Opportunity and Technological Leapfrogging: Catch-up in Digital TV by the Korean Firms," MPRA Paper 109777, University Library of Munich, Germany.
    31. Kang, Byeongwoo & Motohashi, Kazuyuki, 2015. "Essential intellectual property rights and inventors’ involvement in standardization," Research Policy, Elsevier, vol. 44(2), pages 483-492.
    32. Carpenter, Mark P. & Narin, Francis & Woolf, Patricia, 1981. "Citation rates to technologically important patents," World Patent Information, Elsevier, vol. 3(4), pages 160-163, October.
    33. Patel, Pari & Pavitt, Keith, 1997. "The technological competencies of the world's largest firms: Complex and path-dependent, but not much variety," Research Policy, Elsevier, vol. 26(2), pages 141-156, May.
    34. Gnyawali, Devi R. & Park, Byung-Jin (Robert), 2011. "Co-opetition between giants: Collaboration with competitors for technological innovation," Research Policy, Elsevier, vol. 40(5), pages 650-663, June.
    35. Sadowski, B M & Dittrich, K & Duysters, G M, 2003. "Collaborative Strategies in the Event of Technological Discontinuities: The Case of Nokia in the Mobile Telecommunication Industry," Small Business Economics, Springer, vol. 21(2), pages 173-186, September.
    36. Cusumano, Michael A. & Mylonadis, Yiorgos & Rosenbloom, Richard S., 1992. "Strategic Maneuvering and Mass-Market Dynamics: The Triumph of VHS over Beta," Business History Review, Cambridge University Press, vol. 66(1), pages 51-94, April.
    37. Martin Kenney & Bryan Pon, 2011. "Structuring the Smartphone Industry: Is the Mobile Internet OS Platform the Key?," Journal of Industry, Competition and Trade, Springer, vol. 11(3), pages 239-261, September.
    38. Aija Elina Leiponen, 2008. "Competing Through Cooperation: The Organization of Standard Setting in Wireless Telecommunications," Management Science, INFORMS, vol. 54(11), pages 1904-1919, November.
    39. Péter Érdi & Kinga Makovi & Zoltán Somogyvári & Katherine Strandburg & Jan Tobochnik & Péter Volf & László Zalányi, 2013. "Prediction of emerging technologies based on analysis of the US patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(1), pages 225-242, April.
    40. Bekkers, Rudi & Martinelli, Arianna, 2012. "Knowledge positions in high-tech markets: Trajectories, standards, strategies and true innovators," Technological Forecasting and Social Change, Elsevier, vol. 79(7), pages 1192-1216.
    41. Bruno Cassiman & Reinhilde Veugelers & Pluvia Zuniga, 2008. "In search of performance effects of (in)direct industry science links," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(4), pages 611-646, August.
    42. Saviotti, P. P. & Metcalfe, J. S., 1984. "A theoretical approach to the construction of technological output indicators," Research Policy, Elsevier, vol. 13(3), pages 141-151, June.
    43. Metcalfe, J. S. & Miles, Ian, 1994. "Standards, selection and variety: an evolutionary approach," Information Economics and Policy, Elsevier, vol. 6(3-4), pages 243-268, December.
    44. C. Gay & C. Le Bas & P. Patel & K. Touach, 2005. "The determinants of patent citations: an empirical analysis of French and British patents in the US," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 14(5), pages 339-350.
    45. David, Paul A. & Bunn, Julie Ann, 1988. "The economics of gateway technologies and network evolution: Lessons from electricity supply history," Information Economics and Policy, Elsevier, vol. 3(2), pages 165-202.
    46. Rosenberg, Nathan, 1969. "The Direction of Technological Change: Inducement Mechanisms and Focusing Devices," Economic Development and Cultural Change, University of Chicago Press, vol. 18(1), pages 1-24, Part I Oc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delgosha, Mohammad Soltani & Hajiheydari, Nastaran & Talafidaryani, Mojtaba, 2022. "Discovering IoT implications in business and management: A computational thematic analysis," Technovation, Elsevier, vol. 118(C).
    2. Lai, Kuei-Kuei & Chen, Yu-Long & Kumar, Vimal & Daim, Tugrul & Verma, Pratima & Kao, Fang-Chen & Liu, Ruirong, 2023. "Mapping technological trajectories and exploring knowledge sources: A case study of E-payment technologies," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    3. Lai, Kuei-Kuei & Bhatt, Priyanka C. & Kumar, Vimal & Chen, Hsueh-Chen & Chang, Yu-Hsin & Su, Fang-Pei, 2021. "Identifying the impact of patent family on the patent trajectory: A case of thin film solar cells technological trajectories," Journal of Informetrics, Elsevier, vol. 15(2).
    4. Jungpyo Lee & So Young Sohn, 2021. "Recommendation system for technology convergence opportunities based on self-supervised representation learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 1-25, January.
    5. Borner, Kathrin & Berends, Hans & Deken, Fleur & Feldberg, Frans, 2023. "Another pathway to complementarity: How users and intermediaries identify and create new combinations in innovation ecosystems," Research Policy, Elsevier, vol. 52(7).
    6. Xiaoyu Liu & Alan L. Porter, 2020. "A 3-dimensional analysis for evaluating technology emergence indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 27-55, July.
    7. ZHU Chen & MOTOHASHI Kazuyuki, 2022. "Government R&D spending as a driving force of technology convergence," Discussion papers 22030, Research Institute of Economy, Trade and Industry (RIETI).
    8. Heikkilä, Jussi & Rissanen, Julius & Ali-Vehmas, Timo, 2023. "Coopetition, standardization and general purpose technologies: A framework and an application," Telecommunications Policy, Elsevier, vol. 47(4).
    9. Sick, Nathalie & Bröring, Stefanie, 2022. "Exploring the research landscape of convergence from a TIM perspective: A review and research agenda," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    10. Jiang, Syuan-Yi, 2022. "Transition and innovation ecosystem – investigating technologies, focal actors, and institution in eHealth innovations," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    11. Junjun Hou & Ya Hou & Zijin Li, 2022. "Patent disclosure strategies of companies participating in standard setting: Based on government regulation perspective," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(8), pages 3987-3995, December.
    12. Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
    13. Kuan, Chung-Huei & Lin, Jia-Tian & Chen, Dar-Zen, 2021. "Characterizing Patent Assignees by Their Structural Positions Relative to a Field’s Evolutionary Trajectory," Journal of Informetrics, Elsevier, vol. 15(4).
    14. Knut Blind & Alex Fenton, 2022. "Standard-relevant publications: evidence, processes and influencing factors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 577-602, January.
    15. Kim, Dongwook & Kim, Sungbum, 2022. "How do standards committees affect the success of a standard? Comparative analysis of RCS and VoLTE and proposed hybrid standards development model of open and bandwagon approaches," Telecommunications Policy, Elsevier, vol. 46(8).
    16. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    17. Kim, Dong-hyu, 2022. "Effects of catch-up and incumbent firms’ SEP strategic manoeuvres," Research Policy, Elsevier, vol. 51(5).
    18. Yu, Jiang & Liu, Rui & Chen, Feng, 2020. "Linking institutional environment with technological change: The rise of China's flat panel display industry," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Könnölä, Totti & Eloranta, Ville & Turunen, Taija & Salo, Ahti, 2021. "Transformative governance of innovation ecosystems," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    20. Ahn, Sang-Jin, 2020. "Three characteristics of technology competition by IoT-driven digitization," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    21. Wang, Lili & Jiang, Shan & Zhang, Shiyun, 2020. "Mapping technological trajectories and exploring knowledge sources: A case study of 3D printing technologies," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    22. Shu-Hao Chang, 2022. "Examining Key Technologies Among Academic Patents Through an Analysis of Standard-Essential Patents," SAGE Open, , vol. 12(3), pages 21582440221, July.
    23. Ying Tang & Xuming Lou & Zifeng Chen & Chengjin Zhang, 2020. "A Study on Dynamic Patterns of Technology Convergence with IPC Co-Occurrence-Based Analysis: The Case of 3D Printing," Sustainability, MDPI, vol. 12(7), pages 1-26, March.
    24. Jesús Noel Sárez Rubí & Paulo Roberto de Lira Gondim, 2020. "Interoperable Internet of Medical Things platform for e-Health applications," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    25. Chen Zhu & Kazuyuki Motohashi, 2023. "Government R&D spending as a driving force of technology convergence: a case study of the Advanced Sequencing Technology Program," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 3035-3065, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Dong-hyu, 2022. "Effects of catch-up and incumbent firms’ SEP strategic manoeuvres," Research Policy, Elsevier, vol. 51(5).
    2. Lee, Won Sang & Sohn, So Young, 2018. "Effects of standardization on the evolution of information and communications technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 308-317.
    3. Kang, Byeongwoo & Motohashi, Kazuyuki, 2015. "Essential intellectual property rights and inventors’ involvement in standardization," Research Policy, Elsevier, vol. 44(2), pages 483-492.
    4. Murmann, Johann Peter & Frenken, Koen, 2006. "Toward a systematic framework for research on dominant designs, technological innovations, and industrial change," Research Policy, Elsevier, vol. 35(7), pages 925-952, September.
    5. Huenteler, Joern & Ossenbrink, Jan & Schmidt, Tobias S. & Hoffmann, Volker H., 2016. "How a product’s design hierarchy shapes the evolution of technological knowledge—Evidence from patent-citation networks in wind power," Research Policy, Elsevier, vol. 45(6), pages 1195-1217.
    6. Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
    7. Raven, Michael & Blind, Knut, 2017. "The characteristics and impacts of scientific publications in biotechnology research referenced in standards," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 167-179.
    8. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    9. Blind, Knut & Mangelsdorf, Axel, 2016. "Motives to standardize: Empirical evidence from Germany," Technovation, Elsevier, vol. 48, pages 13-24.
    10. Gamarra, Yanis Luca & Friedl, Gunther, 2023. "Declared essential patents and average total R&D expenditures per patent family," Telecommunications Policy, Elsevier, vol. 47(7).
    11. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    12. Kang, Byeongwoo, 2015. "The innovation process of Huawei and ZTE: Patent data analysis," China Economic Review, Elsevier, vol. 36(C), pages 378-393.
    13. Triulzi, G., 2014. "Technology life cycle and specialization patterns of latecomer countries: The case of the semiconductor industry," MERIT Working Papers 2014-012, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    14. Puay Khoon Toh & Cameron D. Miller, 2017. "Pawn to Save a Chariot, or Drawbridge Into the Fort? Firms' Disclosure During Standard Setting and Complementary Technologies Within Ecosystems," Strategic Management Journal, Wiley Blackwell, vol. 38(11), pages 2213-2236, November.
    15. Hussinger, Katrin & Schwiebacher, Franz, 2013. "The value of disclosing IPR to open standard setting organizations," ZEW Discussion Papers 13-060, ZEW - Leibniz Centre for European Economic Research.
    16. Epicoco, Marianna, 2013. "Knowledge patterns and sources of leadership: Mapping the semiconductor miniaturization trajectory," Research Policy, Elsevier, vol. 42(1), pages 180-195.
    17. Joo, SH & Oh, C & Lee, Keun, 2016. "Catch-up Strategy of an Emerging Firm in an Emerging Country: Analyzing the Case of Huawei vs. Ericsson with Patent Data," MPRA Paper 109958, University Library of Munich, Germany.
    18. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    19. Yong-Gil Lee & Jeong-Dong Lee & Yong-Il Song & Se-Jun Lee, 2007. "An in-depth empirical analysis of patent citation counts using zero-inflated count data model: The case of KIST," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(1), pages 27-39, January.
    20. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.

    More about this item

    Keywords

    M2M/IoT; Standards; Technological trajectory; Catch-up;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:46:y:2017:i:7:p:1234-1254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.