IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v88y2018icp54-67.html
   My bibliography  Save this article

Comparative energy scenarios: Solving the capacity sizing problem on the French Atlantic Island of Yeu

Author

Listed:
  • Loisel, Rodica
  • Lemiale, Lionel

Abstract

Remote island communities face problems caused by the continuity and reliability of their power supply, which tend to be exacerbated when they rely on fluctuating renewables. In this paper the sizing of supply-demand-storage schemes is addressed in respect of their economy and feasibility. In the case of the French Atlantic Island of Yeu, high electricity peaks are common, due to tourism and to the seasonal use of second homes. A power plant dispatching model is used to simulate energy scenarios in 2030, subject to the supply-demand power equilibrium and the requirements of hydrogen-powered boats. Interconnected Yeu Island could accommodate 30 MW of renewables without curtailment, ensuring an electricity independence rate of 86% and renewable energy generation rate of 131% in the load, made up of wind (42%), solar (10%), tidal (21%), wave energy (25%) and biomass (2%). Excess energy could be exported through bidirectional cables, which are also the key adjustment variable in the reserve margins. Energy transition costs amount to 112 M€ in renewable-hydrogen projects, and 3 M€ for demand-side measures achieving a 2.7% reduction in load. An island self-sufficient power system with Yeu load characteristics would require at least 40 MW of variable renewables and 1 GWh energy storage capacity, at costs of 1.15 Bln€.

Suggested Citation

  • Loisel, Rodica & Lemiale, Lionel, 2018. "Comparative energy scenarios: Solving the capacity sizing problem on the French Atlantic Island of Yeu," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 54-67.
  • Handle: RePEc:eee:rensus:v:88:y:2018:i:c:p:54-67
    DOI: 10.1016/j.rser.2018.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118300443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Demiroren, A. & Yilmaz, U., 2010. "Analysis of change in electric energy cost with using renewable energy sources in Gökceada, Turkey: An island example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 323-333, January.
    2. Adnane Kendel & Nathalie Lazaric, 2015. "The diffusion of smart meters in France: A discussion of the empirical evidence and the implications for smart cities," Post-Print halshs-01246427, HAL.
    3. Cross, Sam & Padfield, David & Ant-Wuorinen, Risto & King, Phillip & Syri, Sanna, 2017. "Benchmarking island power systems: Results, challenges, and solutions for long term sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1269-1291.
    4. Newbery, David, 2016. "Missing money and missing markets: Reliability, capacity auctions and interconnectors," Energy Policy, Elsevier, vol. 94(C), pages 401-410.
    5. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    6. Notton, Gilles, 2015. "Importance of islands in renewable energy production and storage: The situation of the French islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 260-269.
    7. Pflaum, Peter & Alamir, M. & Lamoudi, M.Y., 2017. "Battery sizing for PV power plants under regulations using randomized algorithms," Renewable Energy, Elsevier, vol. 113(C), pages 596-607.
    8. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2011. "Centralisation and decentralisation in strategic municipal energy planning in Denmark," Energy Policy, Elsevier, vol. 39(3), pages 1338-1351, March.
    9. Möller, Bernd & Sperling, Karl & Nielsen, Steffen & Smink, Carla & Kerndrup, Søren, 2012. "Creating consciousness about the opportunities to integrate sustainable energy on islands," Energy, Elsevier, vol. 48(1), pages 339-345.
    10. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    11. Bergaentzlé, Claire & Clastres, Cédric & Khalfallah, Haikel, 2014. "Demand-side management and European environmental and energy goals: An optimal complementary approach," Energy Policy, Elsevier, vol. 67(C), pages 858-869.
    12. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    13. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.
    14. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    15. Giatrakos, Georgios P. & Tsoutsos, Theocharis D. & Zografakis, Nikos, 2009. "Sustainable power planning for the island of Crete," Energy Policy, Elsevier, vol. 37(4), pages 1222-1238, April.
    16. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    17. Erdinc, Ozan & Paterakis, Nikolaos G. & Catalão, João P.S., 2015. "Overview of insular power systems under increasing penetration of renewable energy sources: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 333-346.
    18. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    19. Pillai, Jayakrishnan R. & Heussen, Kai & Østergaard, Poul Alberg, 2011. "Comparative analysis of hourly and dynamic power balancing models for validating future energy scenarios," Energy, Elsevier, vol. 36(5), pages 3233-3243.
    20. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    21. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    22. Claire Bergaentzlé & Cédric Clastres & Haikel Khalfallah, 2014. "Demand-side management and European environmental and energy goals: an optimal complementary approach," Post-Print halshs-00928678, HAL.
    23. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    24. Rae, Callum & Bradley, Fiona, 2012. "Energy autonomy in sustainable communities—A review of key issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6497-6506.
    25. Rodrigues, E.M.G. & Osório, G.J. & Godina, R. & Bizuayehu, A.W. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "Modelling and sizing of NaS (sodium sulfur) battery energy storage system for extending wind power performance in Crete Island," Energy, Elsevier, vol. 90(P2), pages 1606-1617.
    26. Maïzi, Nadia & Mazauric, Vincent & Assoumou, Edi & Bouckaert, Stéphanie & Krakowski, Vincent & Li, Xiang & Wang, Pengbo, 2018. "Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," Applied Energy, Elsevier, vol. 227(C), pages 332-341.
    27. Duic, Neven & Krajacic, Goran & da Graça Carvalho, Maria, 2008. "RenewIslands methodology for sustainable energy and resource planning for islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1032-1062, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. François, Agnès & Roche, Robin & Grondin, Dominique & Benne, Michel, 2023. "Assessment of medium and long term scenarios for the electrical autonomy in island territories: The Reunion Island case study," Renewable Energy, Elsevier, vol. 216(C).
    2. Sean Williams & Michael Short & Tracey Crosbie & Maryam Shadman-Pajouh, 2020. "A Decentralized Informatics, Optimization, and Control Framework for Evolving Demand Response Services," Energies, MDPI, vol. 13(16), pages 1-30, August.
    3. Guillou, Nicolas & Thiébot, Jérôme & Chapalain, Georges, 2019. "Turbines’ effects on water renewal within a marine tidal stream energy site," Energy, Elsevier, vol. 189(C).
    4. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorotić, Hrvoje & Doračić, Borna & Dobravec, Viktorija & Pukšec, Tomislav & Krajačić, Goran & Duić, Neven, 2019. "Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 109-124.
    2. Roy, Anthony & Auger, François & Dupriez-Robin, Florian & Bourguet, Salvy & Tran, Quoc Tuan, 2020. "A multi-level Demand-Side Management algorithm for offgrid multi-source systems," Energy, Elsevier, vol. 191(C).
    3. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    4. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    5. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
    6. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    8. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    9. Andrea A. Eras-Almeida & Miguel A. Egido-Aguilera & Philipp Blechinger & Sarah Berendes & Estefanía Caamaño & Enrique García-Alcalde, 2020. "Decarbonizing the Galapagos Islands: Techno-Economic Perspectives for the Hybrid Renewable Mini-Grid Baltra–Santa Cruz," Sustainability, MDPI, vol. 12(6), pages 1-47, March.
    10. Scott, Ian J. & Carvalho, Pedro M.S. & Botterud, Audun & Silva, Carlos A., 2019. "Clustering representative days for power systems generation expansion planning: Capturing the effects of variable renewables and energy storage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    12. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    13. Patteeuw, Dieter & Bruninx, Kenneth & Arteconi, Alessia & Delarue, Erik & D’haeseleer, William & Helsen, Lieve, 2015. "Integrated modeling of active demand response with electric heating systems coupled to thermal energy storage systems," Applied Energy, Elsevier, vol. 151(C), pages 306-319.
    14. Rodrigues, E.M.G. & Godina, R. & Catalão, J.P.S., 2017. "Modelling electrochemical energy storage devices in insular power network applications supported on real data," Applied Energy, Elsevier, vol. 188(C), pages 315-329.
    15. Hannah Mareike Marczinkowski & Luísa Barros, 2020. "Technical Approaches and Institutional Alignment to 100% Renewable Energy System Transition of Madeira Island—Electrification, Smart Energy and the Required Flexible Market Conditions," Energies, MDPI, vol. 13(17), pages 1-22, August.
    16. Sperling, Karl, 2017. "How does a pioneer community energy project succeed in practice? The case of the Samsø Renewable Energy Island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 884-897.
    17. Rövekamp, Patrick & Schöpf, Michael & Wagon, Felix & Weibelzahl, Martin, 2023. "For better or for worse? On the economic and ecologic value of industrial demand side management in constrained electricity grids," Energy Policy, Elsevier, vol. 183(C).
    18. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    19. Dana Abi Ghanem & Tracey Crosbie, 2021. "The Transition to Clean Energy: Are People Living in Island Communities Ready for Smart Grids and Demand Response?," Energies, MDPI, vol. 14(19), pages 1-26, September.
    20. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:88:y:2018:i:c:p:54-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.