IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v99y2019icp109-124.html
   My bibliography  Save this article

Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources

Author

Listed:
  • Dorotić, Hrvoje
  • Doračić, Borna
  • Dobravec, Viktorija
  • Pukšec, Tomislav
  • Krajačić, Goran
  • Duić, Neven

Abstract

Islands’ energy systems present a challenge in energy planning due to a limited amount of resources which could be used to make islands self-sufficient and sustainable. This paper presents a novel approach for defining energy system of a carbon neutral island which utilizes only intermittent renewable energy sources in combination with vehicle-to-grid concept as a demand response technology, where marine transportation has also been taken into account. Integration of power, heating, cooling and transport sectors has been modelled by using EnergyPLAN tool, i.e. its updated November 2017 version which is capable of simulating vehicle-to-grid operation in mentioned conditions. Power supply capacities have been selected not by using scenario analysis but by implementing an optimization procedure based on series of simulations in EnergyPLAN tool. In order to choose the most suitable power supply system configuration, two boundary conditions have been defined. Firstly, only solar and wind capacities must be utilized. Secondly, total electricity import and export must be balanced, i.e. the island has to be CO2 neutral. In order to validate the approach, Croatian Island of Korčula has been used as the case study. 2011 has been selected as the base year for which final energy consumption has been calculated. The final simulation year was set to 2030 in which optimal capacities are installed. It has been shown that configuration with 40 MW of wind and 6 MW of installed solar capacities presents the least cost solution, while 22 MW of wind in combination with 30 MW of installed solar capacities provides the lowest amount of total electricity import and export. Analysis of the vehicle-to-grid share reduction has shown increase in total import and export in both cases, while transmission peak loads have not been influenced.

Suggested Citation

  • Dorotić, Hrvoje & Doračić, Borna & Dobravec, Viktorija & Pukšec, Tomislav & Krajačić, Goran & Duić, Neven, 2019. "Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 109-124.
  • Handle: RePEc:eee:rensus:v:99:y:2019:i:c:p:109-124
    DOI: 10.1016/j.rser.2018.09.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118306816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.09.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segurado, Raquel & Krajacic, Goran & Duic, Neven & Alves, Luís, 2011. "Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde," Applied Energy, Elsevier, vol. 88(2), pages 466-472, February.
    2. Segurado, R. & Costa, M. & Duić, N. & Carvalho, M.G., 2015. "Integrated analysis of energy and water supply in islands. Case study of S. Vicente, Cape Verde," Energy, Elsevier, vol. 92(P3), pages 639-648.
    3. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
    4. Neves, Diana & Pina, André & Silva, Carlos A., 2015. "Demand response modeling: A comparison between tools," Applied Energy, Elsevier, vol. 146(C), pages 288-297.
    5. Notton, Gilles, 2015. "Importance of islands in renewable energy production and storage: The situation of the French islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 260-269.
    6. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    7. Kapsali, M. & Kaldellis, J.K. & Anagnostopoulos, J.S., 2016. "Investigating the techno-economic perspectives of high wind energy production in remote vs interconnected island networks," Applied Energy, Elsevier, vol. 173(C), pages 238-254.
    8. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2015. "Optimal design of an autonomous solar–wind-pumped storage power supply system," Applied Energy, Elsevier, vol. 160(C), pages 728-736.
    9. Sigrist, L. & Lobato, E. & Rouco, L. & Gazzino, M. & Cantu, M., 2017. "Economic assessment of smart grid initiatives for island power systems," Applied Energy, Elsevier, vol. 189(C), pages 403-415.
    10. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    11. Pukšec, Tomislav & Vad Mathiesen, Brian & Duić, Neven, 2013. "Potentials for energy savings and long term energy demand of Croatian households sector," Applied Energy, Elsevier, vol. 101(C), pages 15-25.
    12. Möller, Bernd & Sperling, Karl & Nielsen, Steffen & Smink, Carla & Kerndrup, Søren, 2012. "Creating consciousness about the opportunities to integrate sustainable energy on islands," Energy, Elsevier, vol. 48(1), pages 339-345.
    13. Guzzi, Francesco & Neves, Diana & Silva, Carlos A., 2017. "Integration of smart grid mechanisms on microgrids energy modelling," Energy, Elsevier, vol. 129(C), pages 321-330.
    14. Blechinger, P. & Cader, C. & Bertheau, P. & Huyskens, H. & Seguin, R. & Breyer, C., 2016. "Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands," Energy Policy, Elsevier, vol. 98(C), pages 674-687.
    15. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2009. "Techno-economic comparison of energy storage systems for island autonomous electrical networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 378-392, February.
    16. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    17. Erdinc, Ozan & Paterakis, Nikolaos G. & Catalão, João P.S., 2015. "Overview of insular power systems under increasing penetration of renewable energy sources: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 333-346.
    18. Kaldellis, J.K. & Zafirakis, D. & Kaldelli, E.L. & Kavadias, K., 2009. "Cost benefit analysis of a photovoltaic-energy storage electrification solution for remote islands," Renewable Energy, Elsevier, vol. 34(5), pages 1299-1311.
    19. Pfeifer, Antun & Dobravec, Viktorija & Pavlinek, Luka & Krajačić, Goran & Duić, Neven, 2018. "Integration of renewable energy and demand response technologies in interconnected energy systems," Energy, Elsevier, vol. 161(C), pages 447-455.
    20. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    21. Khoodaruth, A. & Oree, V. & Elahee, M.K. & Clark, Woodrow W., 2017. "Exploring options for a 100% renewable energy system in Mauritius by 2050," Utilities Policy, Elsevier, vol. 44(C), pages 38-49.
    22. Selosse, Sandrine & Garabedian, Sabine & Ricci, Olivia & Maïzi, Nadia, 2018. "The renewable energy revolution of reunion island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 99-105.
    23. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    24. Dominković, D.F. & Bačeković, I. & Ćosić, B. & Krajačić, G. & Pukšec, T. & Duić, N. & Markovska, N., 2016. "Zero carbon energy system of South East Europe in 2050," Applied Energy, Elsevier, vol. 184(C), pages 1517-1528.
    25. Dominković, D.F. & Bačeković, I. & Pedersen, A.S. & Krajačić, G., 2018. "The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1823-1838.
    26. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    27. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    28. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2016. "Optimal design and techno-economic analysis of an autonomous small isolated microgrid aiming at high RES penetration," Energy, Elsevier, vol. 116(P1), pages 364-379.
    29. Neves, Diana & Silva, Carlos A. & Connors, Stephen, 2014. "Design and implementation of hybrid renewable energy systems on micro-communities: A review on case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 935-946.
    30. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    31. Liu, Liansheng & Kong, Fanxin & Liu, Xue & Peng, Yu & Wang, Qinglong, 2015. "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 648-661.
    32. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    33. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    34. Yue, Cheng-Dar & Chen, Chung-Sheng & Lee, Yu-Chen, 2016. "Integration of optimal combinations of renewable energy sources into the energy supply of Wang-An Island," Renewable Energy, Elsevier, vol. 86(C), pages 930-942.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    3. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Liu, Jiahong & Mei, Chao & Wang, Hao & Shao, Weiwei & Xiang, Chenyao, 2018. "Powering an island system by renewable energy—A feasibility analysis in the Maldives," Applied Energy, Elsevier, vol. 227(C), pages 18-27.
    6. Meschede, Henning, 2019. "Increased utilisation of renewable energies through demand response in the water supply sector – A case study," Energy, Elsevier, vol. 175(C), pages 810-817.
    7. Pfeifer, Antun & Dobravec, Viktorija & Pavlinek, Luka & Krajačić, Goran & Duić, Neven, 2018. "Integration of renewable energy and demand response technologies in interconnected energy systems," Energy, Elsevier, vol. 161(C), pages 447-455.
    8. Alessandro Corsini & Eileen Tortora, 2018. "Sea-Water Desalination for Load Levelling of Gen-Sets in Small Off-Grid Islands," Energies, MDPI, vol. 11(8), pages 1-18, August.
    9. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
    10. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Alves, M. & Segurado, R. & Costa, M., 2020. "On the road to 100% renewable energy systems in isolated islands," Energy, Elsevier, vol. 198(C).
    12. Bertheau, Paul, 2020. "Supplying not electrified islands with 100% renewable energy based micro grids: A geospatial and techno-economic analysis for the Philippines," Energy, Elsevier, vol. 202(C).
    13. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    14. Gioutsos, Dean Marcus & Blok, Kornelis & van Velzen, Leonore & Moorman, Sjoerd, 2018. "Cost-optimal electricity systems with increasing renewable energy penetration for islands across the globe," Applied Energy, Elsevier, vol. 226(C), pages 437-449.
    15. Mimica, Marko & Krajačić, Goran, 2021. "The Smart Islands method for defining energy planning scenarios on islands," Energy, Elsevier, vol. 237(C).
    16. Cabrera, Pedro & Lund, Henrik & Carta, José A., 2018. "Smart renewable energy penetration strategies on islands: The case of Gran Canaria," Energy, Elsevier, vol. 162(C), pages 421-443.
    17. Meschede, Henning & Esparcia, Eugene A. & Holzapfel, Peter & Bertheau, Paul & Ang, Rosario C. & Blanco, Ariel C. & Ocon, Joey D., 2019. "On the transferability of smart energy systems on off-grid islands using cluster analysis – A case study for the Philippine archipelago," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Bertheau, Paul & Blechinger, Philipp, 2018. "Resilient solar energy island supply to support SDG7 on the Philippines: Techno-economic optimized electrification strategy for small islands," Utilities Policy, Elsevier, vol. 54(C), pages 55-77.
    19. Majidi Nezhad, M. & Groppi, D. & Marzialetti, P. & Fusilli, L. & Laneve, G. & Cumo, F. & Garcia, D. Astiaso, 2019. "Wind energy potential analysis using Sentinel-1 satellite: A review and a case study on Mediterranean islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 499-513.
    20. Lammers, Katrin & Bertheau, Paul & Blechinger, Philipp, 2020. "Exploring requirements for sustainable energy supply planning with regard to climate resilience of Southeast Asian islands," Energy Policy, Elsevier, vol. 146(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:99:y:2019:i:c:p:109-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.